Skip to main content

On a Proper Tensor-Diffusivity Model for Large-Eddy Simulation of Buoyancy-Driven Turbulence

Abstract

In this work, we aim to shed light to the following research question: can we find a nonlinear tensorial subgrid-scale (SGS) heat flux model with good physical and numerical properties, such that we can obtain satisfactory predictions for buoyancy-driven turbulent flows? This is motivated by our findings showing that the classical (linear) eddy-diffusivity assumption, \(\varvec{q}^{eddy} \propto \nabla \overline{T}\), fails to provide a reasonable approximation for the actual SGS heat flux, \(\varvec{q}= \overline{\varvec{u}T} - \overline{\varvec{u}} \overline{T}\): namely, a priori analysis for air-filled Rayleigh-Bénard convection (RBC) clearly shows a strong misalignment. In the quest for more accurate models, we firstly study and confirm the suitability of the eddy-viscosity assumption for RBC carrying out a posteriori tests for different models at very low Prandtl numbers (liquid sodium, \(Pr=0.005\)) where no heat flux SGS activity is expected. Then, different (nonlinear) tensor-diffusivity SGS heat flux models are studied a priori using DNS data of air-filled (\(Pr=0.7\)) RBC at Rayleigh numbers up to \(10^{11}\). Apart from having good alignment trends with the actual SGS heat flux, we also restrict ourselves to models that are numerically stable per se and have the proper cubic near-wall behavior. This analysis leads to a new family of SGS heat flux models based on the symmetric positive semi-definite tensor \(\mathsf {G}\mathsf {G}^{T}\) where \(\mathsf {G}\equiv \nabla \overline{\varvec{u}}\), i.e. \(\varvec{q}\propto \mathsf {G}\mathsf {G}^{T}\nabla \overline{T}\), and the invariants of the \(\mathsf {G}\mathsf {G}^{T}\) tensor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Arshad, S., Gonzalez-Juez, E., Dasgupta, A., Menon, S., Oevermann, M.: Subgrid Reaction-Diffusion Closure for Large Eddy Simulations Using the Linear-Eddy Model. Flow Turbul. Combust. 103(2), 389–416 (2019)

    Google Scholar 

  2. Berselli, L.C., Iliescu, T., Layton, W.: Mathematics of Large Eddy Simulation of Turbulent Flows, 1st edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Chapman, D.R., Kuhn, G.D.: The limiting behaviour of turbulence near a wall. J. Fluid Mech. 170, 265–292 (1986)

    MATH  Google Scholar 

  4. Chillà, F., Schumacher, J.: New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35, 58 (2012)

    Google Scholar 

  5. Chumakov, S.G.: A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence. Phys. Rev. E 78, 036313 (2008)

    Google Scholar 

  6. Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)

    MATH  Google Scholar 

  7. Corrsin, S.: On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence. J. Appl. Phys. 22, 469 (1951)

    MATH  MathSciNet  Google Scholar 

  8. Dabbagh, F., Trias, F.X., Gorobets, A., Oliva, A.: On the evolution of flow topology in turbulent Rayleigh-Bénard convection. Phys. Fluids 28, 115105 (2016)

    Google Scholar 

  9. Dabbagh, F., Trias, F.X., Gorobets, A., Oliva, A.: A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection. Phys. Fluids 29, 105103 (2017)

    Google Scholar 

  10. Dabbagh, F., Trias, F.X., Gorobets, A., Oliva, A.: Flow topology dynamics in a three-dimensional phase space for turbulent Rayleigh-Bénard convection. Phys. Rev. Fluids 5, 024603 (2020)

    Google Scholar 

  11. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634 (1970)

    Google Scholar 

  12. Emran, M.S., Schumacher, J.: Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35, 108 (2012)

    Google Scholar 

  13. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)

    MATH  Google Scholar 

  14. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Gorobets, A., Trias, F.X., Soria, M., Oliva, A.: A scalable parallel Poisson solver for three-dimensional problems with one periodic direction. Comput. Fluids 39, 525–538 (2010)

    MATH  Google Scholar 

  16. Grötzbach, G.: Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection. J. Comput. Phys. 49, 241–264 (1983)

    Google Scholar 

  17. Higgins, C.W., Parlange, M.B., Meneveau, C.: The heat flux and the temperature gradient in the lower atmosphere. Geophys. Res. Lett. 31, L22105 (2004)

    Google Scholar 

  18. Kaczorowski, M., Xia, K.: Turbulent flow in the bulk of Rayleigh-Bénard convection: small-scale properties in a cubic cell. J. Fluid Mech. 722, 596–617 (2013)

    MATH  MathSciNet  Google Scholar 

  19. Leonard, A.: Large-eddy simulation of chaotic convection and beyond. AIAA Paper 97, 0304 (1997)

    Google Scholar 

  20. Maestro, D., Cuenot, B., Selle, L.: Large Eddy Simulation of Combustion and Heat Transfer in a Single Element GCH4/GOx Rocket Combustor. Flow Turbul. Combust. 103(3), 699–730 (2019)

    Google Scholar 

  21. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    MATH  Google Scholar 

  22. Moin, P., Kim, J.: Numerical investigations of turbulent channel flow. J. Fluid Mech. 118, 341–377 (1982)

    MATH  Google Scholar 

  23. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    MATH  Google Scholar 

  24. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Google Scholar 

  25. Park, N., Lee, S., Lee, J., Choi, H.: A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Phys. Fluids 18(12), 125109 (2006)

    MATH  Google Scholar 

  26. Peng, S., Davidson, L.: On a subgrid-scale heat flux model for large eddy simulation of turbulent thermal flow. Int. J. Heat Mass Transf. 45, 1393–1405 (2002)

    MATH  Google Scholar 

  27. Piomelli, U., Ferziger, J., Moin, P., Kim, J.: New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A 1, 1061–1068 (1989)

    Google Scholar 

  28. Ryu, S., Iaccarino, G.: A subgrid-scale eddy-viscosity model based on the volumetric strain-stretching. Phys. Fluids 26(6), 065107 (2014)

    Google Scholar 

  29. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  30. Scheel, J.D., Schumacher, J.: Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147–173 (2016)

    MathSciNet  Google Scholar 

  31. Sergent, A., Joubert, P., Le Quéré, P.: Development of a local subgrid diffusivity model for large-eddy simulation of buoyancy-driven flows: application to a square differentially heated cavity. Numer. Heat Transf. Part A 44(8), 789–810 (2003)

    Google Scholar 

  32. Shishkina, O., Stevens, R.J.A.M., Grossmann, S., Lohse, D.: Boundary layer structure in turbulent thermal convection and consequences for the required numerical resolution. New J. Phys. 12, 075022 (2010)

    Google Scholar 

  33. Silvis, M.H., Remmerswaal, R.A., Verstappen, R.: Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. Phys. Fluids 29(1), 015105 (2017)

    Google Scholar 

  34. Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 91, 99–164 (1963)

    Google Scholar 

  35. Stevens, R.J.A.M., Lohse, D., Verzicco, R.: Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J. Fluid Mech. 688, 31–43 (2011)

    MATH  Google Scholar 

  36. The DNS results presented in this paper are publicly. http://www.cttc.upc.edu/downloads/RBC_lowPr

  37. Togni, R., Cimarelli, A., Angelis, E.D.: Physical and scale-by-scale analysis of Rayleigh-Bénard convection. J. Fluid Mech. 782, 380–404 (2015)

    MATH  MathSciNet  Google Scholar 

  38. Togni, R., Cimarelli, A., Angelis, E.D.: Resolved and subgrid dynamics of Rayleigh-Bénard convection. J. Fluid Mech. 867, 906–933 (2019)

    MATH  MathSciNet  Google Scholar 

  39. Torras, S., Oliet, C., Rigola, J., Oliva, A.: Drain water heat recovery storage-type unit for residential housing. Appl. Therm. Eng. 103, 670–683 (2016)

    Google Scholar 

  40. Trias, F.X., Folch, D., Gorobets, A., Oliva, A.: Building proper invariants for eddy-viscosity subgrid-scale models. Phys. Fluids 27(6), 065103 (2015)

    Google Scholar 

  41. Trias, F.X., Gorobets, A., Oliva, A.: A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity. J. Comput. Phys. 253, 405–417 (2013)

    MATH  MathSciNet  Google Scholar 

  42. Trias, F.X., Gorobets, A., Silvis, M.H., Verstappen, R.W.C.P., Oliva, A.: A new subgrid characteristic length for turbulence simulations on anisotropic grids. Phys. Fluids 26, 115109 (2017)

    Google Scholar 

  43. Trias, F.X., Lehmkuhl, O.: A self-adaptive strategy for the time-integration of Navier-Stokes equations. Numer. Heat Transf. Part B 60(2), 116–134 (2011)

    Google Scholar 

  44. Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C.D., Verstappen, R.W.C.P.: Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes. J. Comput. Phys. 258, 246–267 (2014)

    MATH  MathSciNet  Google Scholar 

  45. Trias, F.X., Dabbagh, F., Gorobets, A., Oliva, A.: Building a proper tensor-diffusivity model for large-eddy simulation of buoyancy-driven flows. In: Proceedings of the seventh European computational fluid dynamics (ECCOMAS CFD 2018), Glasgow, Scotland, (2018)

  46. Trias, F.X., Dabbagh, F., Gorobets, A., Oliva, A.: On a physically-consistent nonlinear subgrid-scale heat flux model for LES of buoyancy driven flows. In: Tenth international conference on computational fluid dynamics (ICCFD10), Barcelona, Catalonia (2018)

  47. Trias, F.X., Dabbagh, F., Gorobets, A., Oliva, A.: On a proper tensor-diffusivity model for large-eddy simulations of buoyancy driven flows. In: ERCOFTAC workshop, direct and large-eddy simulations 12, Madrid, Spain (2019)

  48. Trias, F.X., Dabbagh, F., Santos, D., Gorobets, A., Oliva, A.: On a proper tensor-diffusivity model for large-eddy simulations of Rayleigh-Bénard convection. In: 17th European turbulence conference, Torino, Italy (2019)

  49. Trias, F.X., Dabbagh, F., Gorobets, A., Pérez-Segarra, D.: Exploring new frontiers in Rayleigh-Bénard convection. (Ref. 2016163972), PRACE 15th Call, (2018)

  50. van der Poel, E.P., Verzicco, R., Grossmann, S., Lohse, D.: Plume emission statistics in turbulent Rayleigh- Bénard convection. J. Fluid Mech. 772, 5–15 (2015)

    Google Scholar 

  51. Verstappen, R.: When does eddy viscosity damp subfilter scales sufficiently? J. Sci. Comput. 49(1), 94–110 (2011)

    MATH  MathSciNet  Google Scholar 

  52. Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-Preserving Discretization of Turbulent Flow. J. Comput. Phys. 187, 343–368 (2003)

    MATH  MathSciNet  Google Scholar 

  53. Vreman, A.W.: The adjoint filter operator in large-eddy simulation of turbulent flow. Phys. Fluids 16, 2012–2022 (2004)

    MATH  Google Scholar 

  54. Yanenko, N.N.: The Method of Fractional Steps. Springer, Berlin (1971)

    MATH  Google Scholar 

  55. You, D., Moin, P.: A dynamic global-coefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complex geometries. Phys. Fluids 21(4), 045109 (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

F.X.T. and F.D. are supported by the Ministerio de Economía y Competitividad, Spain (ENE2017-88697-R). F.X.T. and C.O. are supported by the Generalitat de Catalunya RIS3CAT-FEDER, FusionCAT project (001-P-001722). F.X.T. was financially supported by a Ramón y Cajal postdoctoral contract (RYC-2012-11996). F.X.T. and A.G. are supported by the Research project 20-02-01 of the Department of the Moscow Center for Fundamental and Applied Mathematics at the Keldysh Institute of Applied Mathematics of RAS. F.D. is supported by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development, and the K1MET center for metallurgical research in Austria (www.k1-met.com). Calculations have been performed on the MareNostrum 4 supercomputer at the BSC (PRACE 15th Call, Ref. 2016163972, “Exploring new frontiers in Rayleigh-Bénard convection”; and RES project FI-2019-1-0040 “Exploring nonlinear subgrid-scale heat flux models for buoyancy driven flows”). Preliminary simulations were carried out using computational resources of MCC NRC “Kurchatov Institute”, http://computing.nrcki.ru/. The authors thankfully acknowledge these institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. X. Trias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trias, F.X., Dabbagh, F., Gorobets, A. et al. On a Proper Tensor-Diffusivity Model for Large-Eddy Simulation of Buoyancy-Driven Turbulence. Flow Turbulence Combust 105, 393–414 (2020). https://doi.org/10.1007/s10494-020-00123-3

Download citation

Keywords

  • LES
  • Subgrid-scale models
  • Buoyancy-driven flows
  • Turbulence
  • Tensor-diffusivity