Skip to main content
Log in

Time Scales and Turbulent Spectra above the Base of Stirred Vessels from Large Eddy Simulations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2020

This article has been updated

Abstract

Single-phase Large Eddy Simulations (LESs) have been conducted with M-Star CFD software to compute spectra and time scales of the turbulent flow field at positions above the base of a stirred tank as these time scales may be important to the application of solids suspension. Since LESs do not resolve the entire turbulence spectrum with an unknown effect on computing time scales, simulation aspects such as spatial resolution, tank size and the value of the Smagorinsky constant are investigated. The simulations were conducted for the case of a 108 mm diameter axial flow wide blade hydrofoil, Philadelphia Mixing Solutions Ltd. 3MHS39, in a 295 mm diameter vessel at specific power inputs in the range from 0.03 to 0.43 W/kg. These specific power inputs pertain to the energy required to suspend 600 to 10,000 μm glass spheres at 0.9% (v/v). The focus of the study was on the base of the vessel near the vessel corners where solid particles are observed to reside before suspension in solid-liquid mixing application. Integral and Taylor micro time scales as well as 1-D energy spectra were extracted, for all three velocity components, from the temporal autocorrelation function of the resolved velocity traces at various positions. Radial profiles are presented for these 1-D time scales, for the 3-D integral time scale, and for the resolved time scale k/ε.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

  • 11 February 2020

    The correct figures are presented in this correction article.

References

  1. Zwietering, T.N.: Suspending of solid particles in liquid by agitators. Chem Eng Sci. 8, 244–253 (1958)

    Article  Google Scholar 

  2. Davies, J.T.: Drop sizes of emulsions related to turbulent energy dissipation rates. Chem Eng Sci. 40(5), 839–842 (1985)

    Article  Google Scholar 

  3. Davies, J.T.: A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils. Chem Eng Sci. 42(7), 1671–1676 (1987)

    Article  Google Scholar 

  4. Pacek, A.W., Chamsart, S., Nienow, A.W., Bakker, A.: The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem Eng Sci. 45, 4211–4222 (1999)

    Article  Google Scholar 

  5. Grenville, R.K. and Brown, D.A.R.: Comparing Impellers' Turbulence Generation Characteristics With Application to Liquid-Liquid Dispersions, in North American Mixing Forum, Mayan Riviera, Cancoon (2012)

  6. Grenville, R. K., Mak, A. T. C., Brown, D. A. R.: Suspension of Solid Particles in Vessels Agitated by Axial Flow Impellers, Chem. Eng. Res. Des.,100, 282–291, (2015)

  7. Grenville, R.K., Giacomelli, J.J., Brown, D.A.R.: Suspension of solid particles in vessels agitated by Rushton turbine impellers. Chem Eng Res Des. 109, 730–733 (2016)

    Article  Google Scholar 

  8. Derksen, J., Van den Akker, H.: Large Eddy simulations on the flow driven by a Rushton turbine. AIChE J. 45, 209–221 (1999)

    Article  Google Scholar 

  9. Hartmann, H., Derksen, J.J., Montavon, C., Pearson, J., Hamill, I.S., van den Akker, H.: Assessment of large Eddy and RANS stirred tank simulations by means of LDA. Chem Eng Sci. 59, 2419–2432 (2004)

    Article  Google Scholar 

  10. Gillissen, J.J., Van den Akker, H.: Direct numerical simulation of the turbulent flow in a baffled tank driven by a Rushton turbine. AICHE J. 58, 3878–3890 (2012)

    Article  Google Scholar 

  11. Rao, A., Brodkey, R.: Continuous flow stirred tank turbulence parameters in the impeller stream. Chem Eng Sci. 27, 137–156 (1972)

    Article  Google Scholar 

  12. Wu, H., Patterson, G.: Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer. Chem Eng Sci. 44, 2207–2221 (1989)

    Article  Google Scholar 

  13. Kresta, S.M., Wood, P.E.: The flow field produced by a pitched blade turbine: characterization of the turbulence and estimation of the dissipation rate. Chem Eng Sci. 48, 1761–1774 (1993)

    Article  Google Scholar 

  14. Lee, K., Yianneskis, M.: Turbulence properties of the impeller stream of a Rushton turbine. AIChE J. 44, 13–24 (1998)

    Article  Google Scholar 

  15. Zeierman, S., Wolfshtein, M.: Turbulent time scale for turbulent-flow calculations. AIAA J. 24(10), 1606–1610 (1985)

    Article  Google Scholar 

  16. Tummers, M. J., Passchier, D. M.: Spectral Analysis of Individual Realization LDA Data, Delft University Press, (1998)

  17. M-Star Simulations LLC, M-Star CFD User's Manual, Available online: https://docs.mstarcfd.com/M-StarCFDManual.pdf , USA, 2018

  18. Kruger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method: Principles and Practice. Springer, Switzerland (2017)

    Book  Google Scholar 

  19. Feng, Z.-G., Michaelides, E.: The immersed boundary-lattice Boltzmann method for Soliving fluid-particles interaction problems. J Comput Phys. 195, 602–628 (2004)

    Article  Google Scholar 

  20. Lai, M.-C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys. 160, 705–719 (2000)

    Article  MathSciNet  Google Scholar 

  21. Mittal, R., Iaccarino, G.: Immersed Boundary Methods, Annu. Rev. Fluid Mech., pp. 239–261, (2005)

  22. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Bolztmann-lattice fluid with boundaries. Phys Fluids. 13(11), 3452–3459 (2001)

    Article  Google Scholar 

  23. Hu, K., Meng, J., Zhang, H., Gu, X.-J., Emerson, D., Zhawng, Y.: A Comparitive study of boundary conditions for lattice Boltzmann simulations of high Reynolds number flows. Comput Fluids. 156, 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  24. Smagorinsky, J.: General circulation experiments with the Primative equations 1. The Basic Experiment. Mon Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  25. Pope, S.: Turbulent Flows, Cambridge University Press, (2000)

  26. Deardorff, J.W.: On the magnitude of the subgrid scale Eddy coefficient. J Comput Phys. 7, 120–133 (1971)

    Article  Google Scholar 

  27. Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from large-Eddy simulations. J Fluid Mech. 200, 511–562 (1989)

    Article  Google Scholar 

  28. Deardorff, J.W.: A numerical study of three-dimensional Turbulent Channel flow at large Reynolds numbers. J Fluid Mech. 41, 453–480 (1970)

    Article  Google Scholar 

  29. Mason, P.J., Callen, N.S.: On the magnitude of the subgrid-scale Eddy coefficient in large-Eddy simulations of Turbulent Channel flow. J Fluid Mech. 162, 439–462 (1986)

    Article  MathSciNet  Google Scholar 

  30. Jones, W.P., Wille, M.: Large-Eddy simulation of a plane jet in a cross-flow. Int J Heat Fluid Flow. 17, 296–306 (1996)

    Article  Google Scholar 

  31. Kleissl, J., Kumar, v., Meneveau, C., Parlange, M.: Numerical study of dynamic Smagorinsky models in larger-Eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res. 42, 1–12 (2006)

    Article  Google Scholar 

  32. Eggels, J. G. M.: Direct and Large Eddy Simulation of Turbulent Flow in a Cylindrical Pipe Geometry (PhD Thesis), Delft: Delft University Press (1994)

  33. Press, W.H., Flannery, B.P., Vetterling, W.T., Teukolsky, S.A.: Numerical Recipes: the Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  34. Wilcox, D. C.: Turbulence Modeling for CFD, 3rd Ed., D C W Industries, (2006)

  35. Tennekes, H., Lumley, J. L.: A First Course in Turbulence, MIT Press, (1972)

  36. Bittorf, K. J., Kresta, S. M.: Three-Dimensional Wall jets: Axial Flow in a Stirred Tank, AIChE J., 81, 1277–1284 (2001)

  37. Pope, S.B.: Ten questions concerning the large-Eddy simulation of turbulent flows. New J Phys. 6(35), 1–24 (2004)

    MathSciNet  Google Scholar 

  38. Hartmann, H., Derksen, J.J., Van den Akker, H.: Macroinstability uncovered in a Rushton turbine stirred tank by means of LES. AIChE J. 50(10), 2383–2393 (2004)

    Article  Google Scholar 

  39. Roussinova, V.T., Grgic, B., Kresta, S.M.: Study of macro-instabilities in stirred tanks using a velocity decomposition technique. Chem Eng Res Des. 78(7), 1040–1052 (2000)

    Article  Google Scholar 

  40. Roussinova, V., Kresta, S.M., Weetman, R.: Low frequency Maco-instabilities in a stirred tank: scale up and Predicition based on large Eddy simulations. Chem Eng Sci. 58, 2297–2311 (2003)

    Article  Google Scholar 

  41. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

Download references

Acknowledgments

The first author wishes to acknowledge John Thomas, the CEO and creator of M-StarCFD, for his assistance and tutelage in the methods of LES and Lattice-Boltzmann and their application to this research. The first author wishes to acknowledge Philadelphia Mixing Solutions ltd. for supporting the work conducted herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Giacomelli.

Ethics declarations

Conflict of Interests

The first author wishes to disclose that the work presented in this research was funded by Philadelphia Mixing Solutions, ltd. The first author is both a full-time employee of Philadelphia Mixing Solutions, ltd. and a part-time student at the University of Limerick, Ireland. Both authors declare no conflict of interest.

Nomenclature

C S

Smagorinsky Constant

dt

Simulation Time Step

s

d p43

Mean Particle Diameter

μm

D

Impeller Diameter

m

E(f)

Kinetic Energy Spectrum

m2/s2

f

Frequency

Hz

H

Liquid Height

m

k res

Resolved Kinetic Energy

m2/s2

S

Smagorinsky Mixing Length

m

N

Impeller Speed

Revs/s or Revs/min

N P

Impeller Power Number, \( \frac{P}{\rho {N}^3{D}^5} \)

P

Impeller Power Input

W

r

Radial Direction (cylindrical)

\( \overline{\mathbf{\mathcal{S}}} \)

Total Resolved Strain Rate, \( \sqrt{2{\overline{S}}_{ij}{\overline{S}}_{ij}} \)

s−1

\( {\overline{S}}_{ij} \)

Resolved Strain Rate Tensor, \( \frac{1}{2}\left(\frac{{\partial u}_i}{{\partial x}_j}+\frac{{\partial u}_j}{{\partial x}_i}\right) \)

s−1

t

Time

s

T

Tank Diameter

m

u

(Instantaneous) Velocity

m/s

u

Fluctuating Velocity

m/s

U

Mean Velocity

m/s

u res

Resolved Velocity

m/s

u SGS

Subgrid Scale Velocity

m/s

u tip

Impeller Tip Velocity, πND

m/s

Re

Reynolds Number, \( \frac{N{D}^2}{\nu } \)

x

East/West Direction (rectangular)

y

Axial Direction (cylindrical/rectangular)

z

North/South Direction (rectangular)

Δ

Lattice Size

m or mm

\( \overline{\varepsilon} \)

Average Specific Power Input

m2/s3

ε Local

Local Specific Power Input

m2/s3

ε res

Resolved Energy Dissipation Rate

m2/s3

η k

Kolmogorov Scale, \( {\left(\frac{\nu^3}{\varepsilon}\right)}^{1/4} \)

m

θ

Tangential Direction (cylindrical)

Λ

Impeller Torque

J

ν

Kinematic Molecular Viscosity

m2/s

ν SGS

Kinematic Subgrid Scale Viscosity

m2/s

\( \overline{\nu} \)

Effective Kinematic Viscosity

m2/s

ρ(τ)

Autocorrelation Function

ρ

Fluid Density

kg/m3

τ

Lag Time

s

τ 0, i

Integral Time Scale

s

τ λ

Taylor Micro Time Scale

s

τ f, res

Resolved Fluid Time Scale

s

τ N

Impeller Rotational Time Scale

s

Additional information

The original version of this article was revised and the correct Figs. 1, 3 and 4 inserted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomelli, J.J., Van den Akker, H.E.A. Time Scales and Turbulent Spectra above the Base of Stirred Vessels from Large Eddy Simulations. Flow Turbulence Combust 105, 31–62 (2020). https://doi.org/10.1007/s10494-019-00095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00095-z

Keywords

Navigation