LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method


High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Heywood, J.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  2. 2.

    Lumley, J.: Engines : an introduction. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. 3.

    Arcoumanis, C., Hu, Z., Whitelaw, J.: Tumbling motion : a mechanism for turbulence enhancement in spark-ignition engines. SAE paper 900060 (1990)

  4. 4.

    Borée, J., Miles, P.: In-cylinder flow. In: Encyclopedia of Automotive Engineering. Wiley (2014)

  5. 5.

    Hill, P., Zhang, D.: The effects of swirl and tumble on combustion in spark-ignition engines. Prog. Energy Combust Sci. 20, 373–429 (1994)

    Article  Google Scholar 

  6. 6.

    Borée, J., Maurel, S., Bazile, R.: Disruption of a compressed vortex. Phys. Fluids 14(7), 2543–2556 (2002)

    MATH  Article  Google Scholar 

  7. 7.

    Voisine, M., Thomas, T., Borée, J.: Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow. Exp. Fluids 50, 1393–1407 (2011)

    Article  Google Scholar 

  8. 8.

    Eckerle, W., Rutland, C., Rohlfing, E., Singh, G., McIlroy, A.: Research needs and impacts in predictive simulation for internal combustion engines (PRESICE). Tech. rep., U.S. DOE Office of Science (2011)

  9. 9.

    Haworth, D.: Large-eddy simulation of in-cylinder flows. Oil Gas Sci. Technol. 54(2), 175–185 (1999)

    Article  Google Scholar 

  10. 10.

    Rutland, C.: Large-eddy simulations for internal combustion engines - a review. Int. J. Engine Res 12(421), 421–451 (2011)

    Article  Google Scholar 

  11. 11.

    Hasse, C.: Scale-resolving simulations in engine combustion process design based on a systematic approach for model development. Int. J. Engine Res. 17(1), 44–62 (2016)

    Article  Google Scholar 

  12. 12.

    Buhl, S., Gleiss, F., Köhler, M., Hartmann, F., Messig, D., Brücker, C., Hasse, C.: A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine. Flow Turbul. Combust. 98, 579–600 (2017)

    Article  Google Scholar 

  13. 13.

    Buhl, S., Hartmann, F., Kaiser, S., Hasse, C.: Investigation of an IC engine intake flow based on highly resolved LES and PIV. Oil Gas Sci. Technol, 72(3), 15 (2017)

    Article  Google Scholar 

  14. 14.

    Ameen, M., Yang, X., Kuo, T. W., Som, S.: Parallel methodology to capture cyclic variability in motored engines. Int. J. Engine Res. 18(4), 366–377 (2017)

    Article  Google Scholar 

  15. 15.

    Ma, P., Ewan, T., Jainski, C., Lu, L., Dreizler, A., Sick, V., Ihme, M.: Development and analysis of wall models for internal combustion engine simulations using high-speed micro-PIV measurements. Flow Turbul. Combust. 98(1), 283–309 (2016)

    Article  Google Scholar 

  16. 16.

    Giannakopoulos, G., Frouzakis, C., Boulouchos, K., Fischer, P., Tomboulides, A.: Direct numerical simulation of the flow in the intake pipe of an internal combustion engine. Int. J. Heat Fluid Fl 68(421), 257–268 (2017)

    Article  Google Scholar 

  17. 17.

    Schmitt, M., Frouzakis, C., Tomboulides, A., Wright, Y., Boulouchos, K.: Direct numerical simulation of multiple cycles in a valve/piston assembly. Phys. Fluids 26(3), 035105 (2014)

    Article  Google Scholar 

  18. 18.

    Nek5000 version v17.0. Argonne National Laboratory, IL, U.S.A. Available: https://nek5000.mcs.anl.gov

  19. 19.

    Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(468), 468–488 (1984)

    MATH  Article  Google Scholar 

  20. 20.

    Ho, L., Patera, A.: A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Method. Appl. M. 80, 355–366 (1990)

  21. 21.

    Schmitt, M.: Direct numerical simulations in engine-like geometries. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich (2014)

  22. 22.

    Tomboulides, A., Lee, J., Orszag, S.: Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12(139), 139–167 (1997)

  23. 23.

    Patel, S., Fischer, P., Min, M., Tomboulides, A.: A characteristic-based spectral element method for moving-domain problems. J. Sci. Comput (2018)

  24. 24.

    Schiffmann, P., Gupta, S., Reuss, D., Sick, V., Yang, X., Kuo, T.: TCC–III Engine benchmark for Large-Eddy simulation of IC engine flows. Oil Gas Sci. Technol. 71(1), 3 (2016)

    Article  Google Scholar 

  25. 25.

    Rehm, G., Baum, H.: The equations of motion in thermally driven flows. J. Res National Bureau of Standards 83(3), 297–308 (1978)

  26. 26.

    Trelis CFD v16.3. CSIMSOFT. Available: https://www.csimsoft.com/trelis-cfd

  27. 27.

    Ameen, M., Yang, X., Kuo, T. W., Xue, Q., Som, S.: LES For simulating the gas exchange process in a spark ignition engine. Proc. of the ASME ICEF 2(1002) (2015)

  28. 28.

    Kuo, T. W., Yang, X., Gopalakrishnan, V., Chen, Z.: LES for IC engine flows. Oil Gas Sci. Technol. 69(1), 61–81 (2014)

  29. 29.

    Liu, K., Haworth, D., Yang, X., Gopalakrishnan, V.: Large-eddy simulation of motored flow in a two-valve piston engine: POD analysis and cycle-to-cycle variations. Flow Turbul. Combust. 91(2), 373–403 (2013)

    Article  Google Scholar 

  30. 30.

    Schmitt, M., Frouzakis, C., Wright, Y., Tomboulides, A., Boulouchos, K.: Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using DNS. Int. J. Engine Res. 17, 63–75 (2015)

    Article  Google Scholar 

  31. 31.

    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci Paris 332(3), 265–270 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Enaux, B., Granet, V., Vermorel, O., Lacour, C., Thobois, L., Dugué, V., Poinsot, T.: Large eddy simulation of a motored single-cylinder piston engine : numerical strategies and validation. Flow Turbul. Combust. 86, 153–177 (2011)

    MATH  Article  Google Scholar 

  33. 33.

    Janas, P., Wlokas, I., Böhm, B., Kempf, A.: On the evolution of the flow field in a spark ignition engine. Flow Turbul. Combust 98(1), 237–264 (2017)

    Article  Google Scholar 

  34. 34.

    Nguyen, T., Proch, F., Wlokas, I., Kempf, A.: Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique. Flow Turbul. Combust. 97, 191–230 (2016)

    Article  Google Scholar 

  35. 35.

    Hu, B., Banerjee, S., Liu, K., Rajamohan, D., Deur, J., Xue, Q., Som, S., Senecal, P., Pomraning, E.: Large eddy simulation of a turbulent non-reacting spray jet. In: ASME Internal Combustion Engine Division Fall Technical Conference, vol. 2 (2015)

  36. 36.

    Mare, F. D., Knappstein, R., Baumann, M.: Application of LES-quality criteria to internal combustion engine flows. Comput. Fluids 89, 200–213 (2014)

  37. 37.

    Schmitt, M., Frouzakis, C., Wright, Y., Tomboulides, A., Boulouchos, K.: Direct numerical simulation of the compression stroke under engine-relevant conditions : Evolution of the velocity and thermal boundary layers. Int. J. Heat Fluid Fl. 91, 948–960 (2015)

    Article  Google Scholar 

  38. 38.

    Fischer, P., Heisey, K., Min, M.: Scaling limits for PDE-based simulation. AIAA Aviation American Institute of Aeronautics and Astronautics (2015)

Download references


This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. Preliminary simulations were performed at the Swiss National Supercomputing Center (CSCS) under project ID 753. Financial support from the Forschungsvereinigung Verbrennungskraftmaschinen (FVV, project no. 1286: “Wall heat transfer processes in spark ignition engines”), the Swiss Federal Office of Energy (BfE, contract no. SI/501615-01) and the Swiss Competence Center for Energy Research - Efficient Technologies and Systems for Mobility (SCCER Mobility) is gratefully acknowledged (GKG, CEF, KB).

Author information



Corresponding author

Correspondence to G. K. Giannakopoulos.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giannakopoulos, G.K., Frouzakis, C.E., Fischer, P.F. et al. LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method. Flow Turbulence Combust 104, 673–692 (2020). https://doi.org/10.1007/s10494-019-00067-3

Download citation


  • Internal combustion engine
  • Large eddy simulation
  • Tumble flow
  • Spectral element method
  • High performance computing