Advertisement

LES of the Gas-Exchange Process Inside an Internal Combustion Engine Using a High-Order Method

  • G. K. GiannakopoulosEmail author
  • C. E. Frouzakis
  • P. F. Fischer
  • A. G. Tomboulides
  • K. Boulouchos
Article

Abstract

High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.

Keywords

Internal combustion engine Large eddy simulation Tumble flow Spectral element method High performance computing 

Notes

Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. Preliminary simulations were performed at the Swiss National Supercomputing Center (CSCS) under project ID 753. Financial support from the Forschungsvereinigung Verbrennungskraftmaschinen (FVV, project no. 1286: “Wall heat transfer processes in spark ignition engines”), the Swiss Federal Office of Energy (BfE, contract no. SI/501615-01) and the Swiss Competence Center for Energy Research - Efficient Technologies and Systems for Mobility (SCCER Mobility) is gratefully acknowledged (GKG, CEF, KB).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Heywood, J.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)Google Scholar
  2. 2.
    Lumley, J.: Engines : an introduction. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  3. 3.
    Arcoumanis, C., Hu, Z., Whitelaw, J.: Tumbling motion : a mechanism for turbulence enhancement in spark-ignition engines. SAE paper 900060 (1990)Google Scholar
  4. 4.
    Borée, J., Miles, P.: In-cylinder flow. In: Encyclopedia of Automotive Engineering. Wiley (2014)Google Scholar
  5. 5.
    Hill, P., Zhang, D.: The effects of swirl and tumble on combustion in spark-ignition engines. Prog. Energy Combust Sci. 20, 373–429 (1994)Google Scholar
  6. 6.
    Borée, J., Maurel, S., Bazile, R.: Disruption of a compressed vortex. Phys. Fluids 14(7), 2543–2556 (2002)Google Scholar
  7. 7.
    Voisine, M., Thomas, T., Borée, J.: Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow. Exp. Fluids 50, 1393–1407 (2011)Google Scholar
  8. 8.
    Eckerle, W., Rutland, C., Rohlfing, E., Singh, G., McIlroy, A.: Research needs and impacts in predictive simulation for internal combustion engines (PRESICE). Tech. rep., U.S. DOE Office of Science (2011)Google Scholar
  9. 9.
    Haworth, D.: Large-eddy simulation of in-cylinder flows. Oil Gas Sci. Technol. 54(2), 175–185 (1999)Google Scholar
  10. 10.
    Rutland, C.: Large-eddy simulations for internal combustion engines - a review. Int. J. Engine Res 12(421), 421–451 (2011)Google Scholar
  11. 11.
    Hasse, C.: Scale-resolving simulations in engine combustion process design based on a systematic approach for model development. Int. J. Engine Res. 17(1), 44–62 (2016)Google Scholar
  12. 12.
    Buhl, S., Gleiss, F., Köhler, M., Hartmann, F., Messig, D., Brücker, C., Hasse, C.: A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine. Flow Turbul. Combust. 98, 579–600 (2017)Google Scholar
  13. 13.
    Buhl, S., Hartmann, F., Kaiser, S., Hasse, C.: Investigation of an IC engine intake flow based on highly resolved LES and PIV. Oil Gas Sci. Technol, 72(3), 15 (2017)Google Scholar
  14. 14.
    Ameen, M., Yang, X., Kuo, T. W., Som, S.: Parallel methodology to capture cyclic variability in motored engines. Int. J. Engine Res. 18(4), 366–377 (2017)Google Scholar
  15. 15.
    Ma, P., Ewan, T., Jainski, C., Lu, L., Dreizler, A., Sick, V., Ihme, M.: Development and analysis of wall models for internal combustion engine simulations using high-speed micro-PIV measurements. Flow Turbul. Combust. 98(1), 283–309 (2016)Google Scholar
  16. 16.
    Giannakopoulos, G., Frouzakis, C., Boulouchos, K., Fischer, P., Tomboulides, A.: Direct numerical simulation of the flow in the intake pipe of an internal combustion engine. Int. J. Heat Fluid Fl 68(421), 257–268 (2017)Google Scholar
  17. 17.
    Schmitt, M., Frouzakis, C., Tomboulides, A., Wright, Y., Boulouchos, K.: Direct numerical simulation of multiple cycles in a valve/piston assembly. Phys. Fluids 26(3), 035105 (2014)Google Scholar
  18. 18.
    Nek5000 version v17.0. Argonne National Laboratory, IL, U.S.A. Available: https://nek5000.mcs.anl.gov
  19. 19.
    Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(468), 468–488 (1984)Google Scholar
  20. 20.
    Ho, L., Patera, A.: A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Method. Appl. M. 80, 355–366 (1990)Google Scholar
  21. 21.
    Schmitt, M.: Direct numerical simulations in engine-like geometries. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich (2014)Google Scholar
  22. 22.
    Tomboulides, A., Lee, J., Orszag, S.: Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12(139), 139–167 (1997)Google Scholar
  23. 23.
    Patel, S., Fischer, P., Min, M., Tomboulides, A.: A characteristic-based spectral element method for moving-domain problems. J. Sci. Comput (2018)Google Scholar
  24. 24.
    Schiffmann, P., Gupta, S., Reuss, D., Sick, V., Yang, X., Kuo, T.: TCC–III Engine benchmark for Large-Eddy simulation of IC engine flows. Oil Gas Sci. Technol. 71(1), 3 (2016)Google Scholar
  25. 25.
    Rehm, G., Baum, H.: The equations of motion in thermally driven flows. J. Res National Bureau of Standards 83(3), 297–308 (1978)Google Scholar
  26. 26.
    Trelis CFD v16.3. CSIMSOFT. Available: https://www.csimsoft.com/trelis-cfd
  27. 27.
    Ameen, M., Yang, X., Kuo, T. W., Xue, Q., Som, S.: LES For simulating the gas exchange process in a spark ignition engine. Proc. of the ASME ICEF 2(1002) (2015)Google Scholar
  28. 28.
    Kuo, T. W., Yang, X., Gopalakrishnan, V., Chen, Z.: LES for IC engine flows. Oil Gas Sci. Technol. 69(1), 61–81 (2014)Google Scholar
  29. 29.
    Liu, K., Haworth, D., Yang, X., Gopalakrishnan, V.: Large-eddy simulation of motored flow in a two-valve piston engine: POD analysis and cycle-to-cycle variations. Flow Turbul. Combust. 91(2), 373–403 (2013)Google Scholar
  30. 30.
    Schmitt, M., Frouzakis, C., Wright, Y., Tomboulides, A., Boulouchos, K.: Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using DNS. Int. J. Engine Res. 17, 63–75 (2015)Google Scholar
  31. 31.
    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci Paris 332(3), 265–270 (2001)Google Scholar
  32. 32.
    Enaux, B., Granet, V., Vermorel, O., Lacour, C., Thobois, L., Dugué, V., Poinsot, T.: Large eddy simulation of a motored single-cylinder piston engine : numerical strategies and validation. Flow Turbul. Combust. 86, 153–177 (2011)Google Scholar
  33. 33.
    Janas, P., Wlokas, I., Böhm, B., Kempf, A.: On the evolution of the flow field in a spark ignition engine. Flow Turbul. Combust 98(1), 237–264 (2017)Google Scholar
  34. 34.
    Nguyen, T., Proch, F., Wlokas, I., Kempf, A.: Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique. Flow Turbul. Combust. 97, 191–230 (2016)Google Scholar
  35. 35.
    Hu, B., Banerjee, S., Liu, K., Rajamohan, D., Deur, J., Xue, Q., Som, S., Senecal, P., Pomraning, E.: Large eddy simulation of a turbulent non-reacting spray jet. In: ASME Internal Combustion Engine Division Fall Technical Conference, vol. 2 (2015)Google Scholar
  36. 36.
    Mare, F. D., Knappstein, R., Baumann, M.: Application of LES-quality criteria to internal combustion engine flows. Comput. Fluids 89, 200–213 (2014)Google Scholar
  37. 37.
    Schmitt, M., Frouzakis, C., Wright, Y., Tomboulides, A., Boulouchos, K.: Direct numerical simulation of the compression stroke under engine-relevant conditions : Evolution of the velocity and thermal boundary layers. Int. J. Heat Fluid Fl. 91, 948–960 (2015)Google Scholar
  38. 38.
    Fischer, P., Heisey, K., Min, M.: Scaling limits for PDE-based simulation. AIAA Aviation American Institute of Aeronautics and Astronautics (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • G. K. Giannakopoulos
    • 1
    Email author
  • C. E. Frouzakis
    • 1
  • P. F. Fischer
    • 2
  • A. G. Tomboulides
    • 3
  • K. Boulouchos
    • 1
  1. 1.Aerothermochemistry and Combustion Systems Laboratory, ETH ZurichZurichSwitzerland
  2. 2.Department of Computer ScienceUniversity of IllinoisUrbana-ChampaignUSA
  3. 3.Department of Mechanical EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations