Skip to main content
Log in

The Impact of Bogie Sections on the Wake Dynamics of a High-Speed Train

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The impact of bogie sections on the wake dynamics of a high-speed train (HST) is numerically explored using the improved delayed detached eddy simulation (IDDES). Time-averaged and instantaneous wake flow topology are compared for two underbody configurations: the complex train model (CTM) with bogie sections and the simplified train (STM) with a flat underbody. For both underbody configurations, a pair of counter-rotating half-loop vortices dominates the unsteady wake. Each member of the vortex pair is shed alternately in the wake of the CTM, which is attributed to vortex shedding from the bogie sections. While for the STM, the members of this vortex pair couple and appear simultaneously. The dynamic characteristics of the wake are clarified by using proper orthogonal decomposition (POD) analysis for the IDDES results. The first four POD modes, corresponding to the dominant vortex structures, are analysed in detail, which confirms the significant impact of bogie sections on the wake dynamics of a HST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

St w :

Strouhal number

f :

The frequency

D :

The hydraulic diameter

U * :

The streamwise velocity

W :

The train width

U :

The oncoming flow velocity

u * :

The friction velocity

n :

The distance between the first node and the train surface in the wall normal direction

Δl :

The cell width in the streamwise direction

Δs :

The cell width in the spanwise direction

h wn :

The grid step in the wall-normal direction

C w :

An empirical constant

h max :

The largest local grid spacing

h x :

Local streamwise cell size

h y :

Local wall-normal cell size

h z :

Local lateral cell size

t * :

t* = H/U

C D :

The force coefficient

F x :

The drag force

ρ :

The density of the air

A x :

The projected area in the x direction

C P :

The pressure coefficient

P :

The time-averaged surface pressure

P :

The static pressure

u :

The velocity in the X direction

v :

The velocity in the Y direction

w :

The velocity in the Z direction

U mean :

Time-averaged x-direction velocity

V mean :

Time-averaged y-direction velocity

U RMS :

x-direction velocity fluctuation

V RMS :

y-direction velocity fluctuation VRMS

ω x * :

x-direction vorticity

ω z * :

z-direction vorticity

a j :

The temporal coefficients of the POD modes

References

  1. Baker, C.J.: The flow around high speed trains. J. Wind Eng. Ind. Aerodyn. 98(6), 277–298 (2010). https://doi.org/10.1016/j.jweia.2009.11.002

    Article  Google Scholar 

  2. Bell, J.R., Burton, D., Thompson, M., Herbst, A., Sheridan, J.: Wind tunnel analysis of the slipstream and wake of a high-speed train. J. Wind Eng. Ind. Aerodyn. 134, 122–138 (2014). https://doi.org/10.1016/j.jweia.2014.09.004

    Article  Google Scholar 

  3. Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H., Sheridan, J.: Dynamics of trailing vortices in the wake of a generic high-speed train. J. Fluid. Struct. 65, 238–256 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.06.003

    Article  Google Scholar 

  4. Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H., Sheridan, J.: Flow topology and unsteady features of the wake of a generic high-speed train. J. Fluid. Struct. 61, 168–183 (2016). https://doi.org/10.1016/j.jfluidstructs.201511.009

  5. Xia, C., Wang, H.F., Shan, X.Z., Yang, Z.G., Li, Q.L.: Effects of ground configurations on the slipstream and near wake of a high-speed train. J. Wind Eng. Ind. Aerodyn. 168, 177–189 (2017). https://doi.org/10.1016/j.jweia.2017.06.005

    Article  Google Scholar 

  6. Pope, C.W., 2007, "Effective Management of Risk from slipstream effects at trackside and platforms," Rail Safety and Standards Board – T425 Report

  7. Baker, C.J., Quinn, A., Sima, M., Hoefener, L., Licciardello, R.: "Full-scale measurement and analysis of train slipstreams and wakes," part 1: ensemble averages. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transp. 228(5), 451–467 (2014). https://doi.org/10.1177/0954409713485944

    Article  Google Scholar 

  8. Baker, C.J., Quinn, A., Sima, M., Hoefener, L., Licciardello, R.: "Full-scale measurement and analysis of train slipstreams and wakes," part 2: gust analysis. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transp. 228(5), 468–480 (2014). https://doi.org/10.1177/0954409713488098

    Article  Google Scholar 

  9. Baker, C.J., Dalley, S.J., Johnson, T., Quinn, A., Wright, N.G.: The slipstream and wake of a high-speed train. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transp. 215(2), 83–99 (2001). https://doi.org/10.1243/0954409011531422

    Article  Google Scholar 

  10. Gilbert, T., Baker, C.J., Quinn, A.: Gusts caused by high-speed trains in confined spaces and tunnels. J. Wind Eng. Ind. Aerodyn. 121, 39–48 (2013). https://doi.org/10.1016/j.jweia.2013.07.015

    Article  Google Scholar 

  11. Weise, M., Schober, M., Orellano, A.: Slipstream velocities induced by trains. WSEAS Transactions on Fluid Mechanics. 1(6), 759–761 (2006)

    Google Scholar 

  12. Schulte-Werning, B., Heine, B., Matschke, C.: Unsteady wake flow characteristics of high-speed trains. Proc. Appl. Maths Mech. 2(1), 332–333 (2003)

    Article  Google Scholar 

  13. Muld, T.W., Efraimsson, G., Henningson, D.S.: Flow structures around a HST extracted using proper orthogonal decomposition and dynamic mode decomposition. Comput. Fluids. 57, 87–97 (2012). https://doi.org/10.1016/j.compfluid.2011.12.012

    Article  MathSciNet  Google Scholar 

  14. Pii, L., Vanoli, E., Polidoro, F., Gautier, S., and Tabbal, A., 2014, "A Full Scale Simulation of a High Speed Train for Slipstream Prediction," in: Proceedings of the Transport Research Arena, Paris, France

  15. Östh, J., Kaiser, E., Krajnović, S., Noack, N.R.: Cluster-based reduced-order modelling of the flow in the wake of a high speed train. J. Wind Eng. Ind. Aerodyn. 145, 327–338 (2015). https://doi.org/10.1016/j.jweia.2015.06.003

    Article  Google Scholar 

  16. Wang, S.B., Burton, d., Herbst, A., Sheridan, J., Thompson, M.C.: The effect of bogies on high-speed train slipstream and wake. J. Fluids Struct. 83, 471–489 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.03.013

    Article  Google Scholar 

  17. Xia, C., Shan, X.Z., Yang, Z.G.: Detached-Eddy simulation of ground effect on the wake of a high-speed train. J. Fluids Eng. 139(5), 1–12 (2017). https://doi.org/10.1115/1.4035804

    Article  Google Scholar 

  18. Xia, C., Wang, H.F., Bao, D., Yang, Z.G.: Unsteady flow structures in the wake of a high-speed train. Exp. Thermal Fluid Sci. 98, 381–396 (2018). https://doi.org/10.1016/j.expthermflusci.2018.06.010

    Article  Google Scholar 

  19. Bourgeois, J.A., Sattari, P., Martinuzzi, R.J.: Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer. Phys. Fluids. 23(9), 095101 (2011). https://doi.org/10.1063/1.3623463

    Article  Google Scholar 

  20. Wang, S.B., Bell, J.R., David, B., Herbst, A.H., Sheridan, J., Thompson, M.C.: The performance of different turbulence models (URANS, SAS and DES) for predicting HST slipstream. J. Wind Eng. Ind. Aerodyn. 165, 46–65 (2017). https://doi.org/10.1016/j.jweia.2017.03.001

    Article  Google Scholar 

  21. Tschepe, J., Fischer, D., Nayeri, C.N., Paschereit, C.O., Krajnovic, S.: Investigation of high-speed train drag with towing tank experiments and CFD. Flow, Turbulence and Combustion. 102, 1–18 (2018). https://doi.org/10.1007/s10494-018-9962-y

    Article  Google Scholar 

  22. Morden, J.A., Hemida, H., Baker, C.J.: Comparison of RANS and detached eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train. J. Fluids Eng. 137(4), 1–9 (2015). https://doi.org/10.1115/1.4029261

    Article  Google Scholar 

  23. Rao, A.N., Zhang, J., Minelli, G., Basara, B., Krajnović, S.: An LES investigation of the near-wake flow topology of a simplified heavy vehicle. Flow, Turbulence and Combustion. 102, 1–27 (2018). https://doi.org/10.1007/s10494-018-9959-6

    Article  Google Scholar 

  24. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow. 29(6), 1638–1649 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

    Article  Google Scholar 

  25. Spalart, P.R.: Detached-eddy simulation. Ann. Rev. Fluid Mech. 41(1), 181–202 (2009). https://doi.org/10.1146/annurev.fluid.010908.165130

    Article  MATH  Google Scholar 

  26. Huang, S., Hemida, H., Yang, M.Z.: Numerical calculation of the slipstream generated by a CRH2 high-speed train. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transp. 230(1), 103–116 (2016)

    Article  Google Scholar 

  27. Travin, A., Shur M.L, Strelets M.K, and Spalart, P.R., 2000, "Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows," In Proceedings of the 412th Euromech Colloquium on LES and Complex Transitional and Turbulent Flows, Munich, Germany

  28. Flynn, D., Hemida, H., Soper, D., Baker, C.J.: Detached-eddy simulation of the slipstream of an operational freight train. J. Wind Eng. Ind. Aerodyn. 132, 1–12 (2014). https://doi.org/10.1016/j.jweia.2014.06.016

    Article  Google Scholar 

  29. Flynn, D., Hemida, H., Baker, C.J.: On the effect of crosswinds on the slipstream of a freight train and associated effects. J. Wind Eng. Ind. Aerodyn. 156, 14–28 (2016). https://doi.org/10.1016/j.jweia.2016.07.001

    Article  Google Scholar 

  30. Sirovich, L.: Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  Google Scholar 

  31. Taira, K., Brunton, S.L., Dawson, S.T., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017). https://doi.org/10.2514/1.J056060

    Article  Google Scholar 

  32. Wang, H.F., Cao, H.L., Zhou, Y.: POD analysis of a finite-length cylinder near wake. Exp. Fluids. 55(8), (2014). https://doi.org/10.1007/s00348-014-1790-9

  33. Zhu, H.Y., Wang, C.Y., Wang, H.P., Wang, J.J.: Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743–778 (2017). https://doi.org/10.1017/jfm.2017.647

    Article  Google Scholar 

  34. Wei, Z., Yang, Z.G., Xia, C., Li, Q.L.: Cluster-based reduced-order modelling of the wake stabilization mechanism behind a twisted cylinder. J. Wind Eng. Ind. Aerodyn. 171, 288–303 (2017). https://doi.org/10.1016/j.jweia.2017.10.015

    Article  Google Scholar 

  35. Hemida, H., Baker, C.J., Gao, G.: The calculation of train slipstreams using large-eddy simulation. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transp. 228(1), 25–36 (2013). https://doi.org/10.1177/0954409712460982

    Article  Google Scholar 

  36. Yao, S.B., Sun, Z.X., Guo, D.L., Chen, D.W., Yang, G.W.: Numerical study on wake characteristics of high-speed trains. Acta Mech. Sinica. 29(6), 811–822 (2013). https://doi.org/10.1007/s10409-013-0077-3

    Article  Google Scholar 

  37. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995). https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

  38. Hosseini, Z., Bourgeois, J.A., Martinuzzi, R.J.: Large-scale structures in dipole and quadrupole wakes of a wall-mounted finite rectangular cylinder. Exp. Fluids. 54(9), 1–16 (2013). https://doi.org/10.1007/s00348-013-1595-2

    Article  Google Scholar 

  39. Saeedi, M., Lepoudre, P.P., Wang, B.C.: Direct numerical simulation of turbulent wake behind a surface-mounted square cylinder. J. Fluid Struct. 51, 20–39 (2014). https://doi.org/10.1016/j.jfluidstructs.2014.06.021

    Article  Google Scholar 

  40. Saeedi, M., Wang, B.C.: Large-eddy simulation of turbulent flow around a finite-height wall-mounted square cylinder within a thin boundary layer. Flow Turbul. Combust. 97(2), 513–538 (2016). https://doi.org/10.1007/s10494-015-9700-7

    Article  Google Scholar 

  41. Pan, Y.C., Yao, J.W., Li, C.F.: Discussion on the wake vortex structure of a high speed train by vortex identification methods. Chinese Journal of Theoretical and Applied Mechanics. 50(3), 667–676 (2018)

    Google Scholar 

  42. Niu, J.Q., Wang, Y.M., Zhang, L., Yuan, Y.P.: Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths. Int. J. Heat Mass Transf. 127, 188–199 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grand No. 51875411), Shanghai Key Laboratory of Aerodynamics and Thermal Environment Simulation for Ground Vehicles (Grand No. 18DZ2273300) and Shanghai Automotive Wind Tunnel Technical Service Platform (Grand No. 19DZ2290400). The computing facility and aero-acoustic wind tunnel of Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xia.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Xia, C., Shan, X. et al. The Impact of Bogie Sections on the Wake Dynamics of a High-Speed Train. Flow Turbulence Combust 104, 89–113 (2020). https://doi.org/10.1007/s10494-019-00052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00052-w

Keywords

Navigation