Skip to main content
Log in

Large Eddy Simulation of Combustion and Heat Transfer in a Single Element GCH4/GOx Rocket Combustor

  • Original research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The single element GCH4/GOx rocket combustion chamber developed at the Technische Universität München has been computed using Large Eddy Simulation. The aim of this work is to analyze the flow and combustion features at high pressure, with a particular focus on the prediction of wall heat flux, a key point for the development of reusable engines. The impact of the flow and flame, as well as of the model used, on thermal loads is investigated. Longitudinal distribution of wall heat flux, as well as chamber pressure, have been plotted against experimental data, showing a good agreement. The link between the heat released by the flame, the heat losses and the chamber pressure has been explained by performing an energetic balance of the combustion chamber. A thermally chained numerical simulation of the combustor structure has been used to validate the hypothesis used in the LES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Burkhardt, H., Sippel, M., Herbertz, A., Klevanski, J.: Kerosene vs methane: a propellant tradeoff for reusable liquid booster stages. J. Spacecr. Rocket. 41(5), 762–769 (2004)

    Article  Google Scholar 

  2. Preclik, D., Hagemann, G., Knab, O., Mading, C., Haeseler, D., Haidn, O.J., Woschnak, A., DeRosa, M.: LOX-hydrocarbon preparatory thrust chamber technology activities in Germany. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2005)

  3. Liang, K., Yang, B., Zhang, Z.: Investigation of heat transfer and coking characteristics of hydrocarbon fuels. J. Propul. Power 14(5) (1998)

  4. Fröhlich, A., Popp, M., Schmidt, G., Thelemann, D.: Heat transfer characteristics of H2/O2-combustion chambers. In: Joint Propulsion Conference and Exhibit (1993)

  5. Vingert, L., Habiballah, M., Vuillermoz, P.: Upgrading of the Mascotte cryogenic test bench to the LOX/Methane combustion studies. In: 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”, Liège, Belgium, p. 77 (2002)

  6. Cuoco, F., Yang, B., Oschwald, M.: Experimental investigation of LOX/H2 and LOX/CH4 sprays and flames. In: 24th International Symposium on Space Technology and Science (2004)

  7. Celano, M. P., Silvestri, S., Schlieben, G., Kirchberger, C., Haidn, O. J., Dawson, T., Ranjan, R., Menon, S.: Experimental and numerical investigation of GOX-GCH4 shear-coaxial injector element. In: SP-2014-2969417 (2014)

  8. Roth, C., Haidn, O., Riedmann, H., Ivancic, B., Maestro, D., Cuenot, B., Selle, L., Daimon, Y., Chemnitz, A., Keller, R., et al.: Comparison of different modeling approaches for CFD simulations of a single-element GCH4/GOX rocket combustor. Proceedings of the 2015 Summer Program (2015)

  9. Maestro, D., Selle, L., Cuenot, B.: Thermally chained LES of a GCH4/GOX single element combustion chamber. Proceedings of the 2015 Summer Program (2015)

  10. Roth, C., Haidn, O., Chemnitz, A., Sattelmayer, T., Frank, G., Müller, H., Zips, J., Keller, R., Gerlinger, P., Maestro, D., Selle, L., Cuenot, B., Riedmann, H.: Numerical investigation of flow and combustion in a single element GCH4/Gox rocket combustor. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)

  11. Maestro, D., Cuenot, B., Chemnitz, A., Sattelmayer, T., Roth, C., Haidn, O., Daimon, Y., Keller, R., Gerlinger, P. M., Frank, G., et al.: Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor: Chemistry modeling and turbulence-combustion interaction. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)

  12. Müller, H., Zips, J., Pfitzner, M., Maestro, D., Cuenot, B., Menon, S., Ranjan, R., Tudisco, P., Selle, L.: Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor: A comparative LES study. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)

  13. Maestro, D., Cuenot, B., Selle, L.: Large Eddy Simulation of flow and combustion in a single-element GCH4/GOX rocket combustor. In: 7th European Conference for Aeronautics and Space Sciences (EUCASS) (2017)

  14. Celano, M. P., Silvestri, S., Schlieben, G., Kirchberger, C., Haidn, O.J.: Injector characterization for a GOX-GCH4 single element combustion chamber. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS) (2013)

  15. Celano, M., Silvestri, S., Pauw, J., Perakis, N., Schily, F., Suslov, D., Haidn, O.J.: Heat flux evaluation methods for a single element heat-sink chamber. In: 6th European Conference of Aeronautics and Space Science, Krakow, Poland (2015)

  16. Sankaran, R., Hawkes, E., Chen, J., Lu, T., Law, C.: Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst. 31(1), 1291–1298 (2007)

    Article  Google Scholar 

  17. Lu, T., Law, C.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)

    Article  Google Scholar 

  18. Lu, T., Ju, Y., Law, C.: Complex cap for chemistry reduction and analysis. Combust. Flame 126(1), 1445–1455 (2001)

    Article  Google Scholar 

  19. Frenklach, M., Wang, H., Goldenberg, M., Smith, G., Golden, D.: GRI-MECH: An optimized detailed chemical reaction mechanism for methane combustion. Topical report, September 1992-August 1995. Tech. rep., SRI International, Menlo Park, CA (United States) (1995)

  20. Mari, R.: Influence of heat transfer on high pressure flame structure and stabilization in liquid rocket engines. Ph.D thesis (2015)

  21. Goodwin, D., Moffat, H.K., Speth, R.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Caltech, Pasadena, CA (2009)

  22. Bilger, R., Staarner, S., Kee, R.J.: On reduced mechanisms for methane–air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990)

    Article  Google Scholar 

  23. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Daimon, Y., Terashimay, N.H., Haidn, O.: Combustion modeling study for a GCH4/GOX single element combustion chamber: Steady state simulation and validations. Proceedings of the 2015 Summer Program (2015)

  25. Cabrit, O.: Modelisation des flux parietaux sur les tuyeres des moteurs a propergol solide. Ph.D. thesis (2009)

  26. Kays, W.M., Crawford, M.E., Weigand, B.: Convective Heat and Mass Transfer. McGraw-Hill Inc., New York (2004)

    Google Scholar 

  27. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  28. Schønfeld, T., Rudgyard, M.: Steady and unsteady flows simulations using the hybrid flow solver AVBP. AIAA J. 37(11), 1378–1385 (1999)

    Article  Google Scholar 

  29. Gourdain, N., Gicquel, L., Staffelbach, G., Vermorel, O., Duchaine, F., Boussuge, J. F., Poinsot, T.: High performance parallel computing of flows in complex geometries - part 2: applications. Comput. Sci. Disc. 2(1), 28pp (2009)

    Google Scholar 

  30. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  Google Scholar 

  31. Nicoud, F., Baya Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  32. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  33. Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18(4), 517–519 (1950)

    Article  Google Scholar 

  34. Legier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program, pp 157–168 (2000)

  35. Shum-Kivan, F.: Simulation des Grandes Echelles de flammes de spray et modélisation de la combustion non-prémélangée. Ph.D. thesis, Institut National Polytechnique de Toulouse (2017)

  36. Cuenot, B., Poinsot, T.: Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Direct Numerical Simulation for Turbulent Reacting Flows, p. 225 (1996)

  37. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part i: Non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)

    Article  Google Scholar 

  38. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  39. Winter, F., Silvestri, S., Celano, M. P., Schlieben, G., Haidn, O.: High-speed and emission imaging of a coaxial single element GOX/GCH4 rocket combustion chamber. In: European Conference for Aeronautics and Space Sciences (2017)

  40. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  41. Rudgyard, M., Schönfeld, T., D’Ast, I.: A parallel library for CFD and other grid-based applications. In: International Conference on High-Performance Computing and Networking, pp 358–364. Springer (1996)

  42. Potier, L.: Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines. Ph.D. thesis, Institut National Polytechnique de Toulouse (2018)

  43. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards Inc. (2012)

  44. Duchaine, F., Mendez, S., Nicoud, F., Corpron, A., Moureau, V., Poinsot, T.: Conjugate heat transfer with large eddy simulation for gas turbine components. Comptes-rendus de l’Académie des sciences. Série IIb, Mécanique 337 (6-7), 550–561 (2009)

    Google Scholar 

  45. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley (2003)

  46. Frayssé, V., Giraud, L., Gratton, S., Langou, J.: A set of gmres routines for real and complex arithmetics. CERFACS, Toulouse Cedex, France, Tech. Rep. TR/PA/97/49, [Online]. Available: www.cerfacs.fr (1997)

  47. Perakis, N., Celano, M.P., Haidn, O.J.: Heat flux and temperature evaluation in a rectangular multi-element GOX/GCH4 combustion chamber using an inverse heat conduction method.. In: 7th European Conference for Aerospace Sciences (2017)

  48. Kirchberger, C., Schlieben, G., Haidn, O.J.: Assessment of film cooling characteristics in a GOX/Kerosene rocket combustion chamber. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p 4144 (2013)

Download references

Acknowledgments

The authors acknowledge CINES (Centre Informatique National de l’Enseignement Supérieur) of GENCI (Grand Équipement National de Calcul Intensif) for giving access to HPC resources under the allocations A0032B10157 and A0012B07036. The authors extend special thanks to Mariella Celano, Simona Silvestri, Christoph Kirchberger, Gregor Schlieben and Oskar Haidn for providing the test case and insightful discussions.

Funding

This work has been funded by CERFACS in the context of D. Maestro PhD work. The numerical simulations presented in the paper have been performed using HPC resources provided by CINES of GENCI under the allocations A0032B10157 and A0012B07036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Maestro.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maestro, D., Cuenot, B. & Selle, L. Large Eddy Simulation of Combustion and Heat Transfer in a Single Element GCH4/GOx Rocket Combustor. Flow Turbulence Combust 103, 699–730 (2019). https://doi.org/10.1007/s10494-019-00036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00036-w

Keywords

Navigation