Skip to main content
Log in

Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists

  • SI: THMT-2018
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effects of droplet diameter and the overall (liquid+gas) equivalence ratio on flame topology and propagation statistics in spherically expanding turbulent n-heptane spray flames have been analysed based on three-dimensional Direct Numerical Simulations (DNS) data. It has been found that the range of both mean and Gauss curvatures of the flame surface, and the probability of finding saddle topologies increase with increasing droplet diameter and overall equivalence ratio. The presence of droplets affects the displacement speed and consumption speed statistics principally through the reaction rate of the mixture composition in the reaction zone. The magnitudes of the components of density-weighted displacement speed arising from mixture inhomogeneity and droplet evaporation remain small in comparison to the magnitudes of the reaction rate and molecular diffusion rate components. The presence of large droplets decreases the mean density-weighted displacement speed \( {S}_d^{\ast } \) and increases the probability of finding negative \( {S}_d^{\ast } \) values, except for overall fuel-lean equivalence ratios. The mean consumption speed shows an increasing trend with increasing droplet diameter for fuel-lean overall equivalence ratios, whereas the mean consumption speed decreases with increasing droplet diameter for overall stoichiometric and fuel-rich mixtures. The mean consumption speed remains greater than the mean density-weighted displacement speed for all cases considered here. An alternative flame speed, which represents the growth rate of the flame surface area, has been found to provide an approximate measure of mean consumption flame speed. By contrast, an alternative flame speed, which represents the growth rate of burned gas volume, has been found to approximate the mean density-weighted displacement speed for large droplets in the case of stoichiometric and fuel-rich overall equivalence ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The maximum value of unstrained laminar burning velocity \( {S}_{b\left({\phi}_g\right)} \) is obtained for ϕg ≈ 1.1 for the present thermo-chemistry.

References

  1. Hayashi, S., Kumarevgai, S., Sakai, T.: Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol. 15, 169–177 (1977)

    Google Scholar 

  2. Abdel-Gayed, R.G., Al-Khishali, K.J., Bradley, D.: Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. Lond. A. 391(1801), 393–414 (1984)

    Google Scholar 

  3. Beretta, G.P., Rashidi, M., Keck, J.C.: Turbulent flame propagation and combustion in spark ignition engines. Combust. Flame. 52, 217–245 (1983)

    Google Scholar 

  4. Bradley, D., Gaskell, P.H., Gu, X.J.: Burning velocities, Markstein lengths,and flame quenching for spherical methane-air flames, A computational study. Combust. Flame. 104, 176–198 (1996)

    Google Scholar 

  5. Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame. 123, 507–521 (2000)

    Google Scholar 

  6. Nwagwe, I.K., Weller, H.G., Tabor, G.R., Gosman, A.D., Lawes, M., Sheppard, C.G.W., Wooley, R.: Measurements and large eddy simulations of turbulent premixed flame kernel growth. Proc. Combust. Inst. 28, 59–65 (2000)

    Google Scholar 

  7. Haq, M.Z., Sheppard, C.G.W., Woolley, R., Greenhalgh, D.A., Lockett, R.D.: Wrinkling and curvature of laminar and turbulent premixed flames. Combust. Flame. 131, 1–15 (2002)

    Google Scholar 

  8. Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W., Woolley, R.: Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame. 133, 415–430 (2003)

    Google Scholar 

  9. Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, R.S., Kaminski, C.F.: Curvature and wrinkling of premixed flame kernels—comparisons of OH PLIF and DNS data. Proc. Combust. Inst. 30, 809–817 (2005)

    Google Scholar 

  10. Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, R.S., Kaminski, C.F.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31(I), 1319–1326 (2007)

    Google Scholar 

  11. Lawes, M., Saat, A.: Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions. Proc. Combust. Inst. 33, 2047–2054 (2011)

    Google Scholar 

  12. Lawes, M., Ormsby, M.P., Sheppard, C.G.W., Woolley, R.: The turbulent burning velocity of iso-octane/air mixtures. Combust. Flame. 159, 1949–1959 (2012)

    Google Scholar 

  13. Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503–0441–5 (2012)

    Google Scholar 

  14. Akkerman, V., Chaudhuri, S., Law, C.K.: Accelerative propagation and explosion triggering by expanding turbulent premixed flames. Phys. Rev. E. 87(23008), (2013)

  15. Brequigny, P., Endouard, C., Mounaïm-Rousselle, C., Foucher, F.: An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques. Exp. Therm. Sci. 95, 11–17 (2018)

    Google Scholar 

  16. Thimothée, R., Chauveau, C., Halter, F. and Gökalp I., Characterization of cellular instabilities of a flame propagating in an aerosol, Proc. of ASME Turbo Expo 2015, GT2015–44022, Canada, (2015)

  17. Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106, 19–39 (1995)

    Google Scholar 

  18. Poinsot, T., Candel, S., Trouve, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995)

    Google Scholar 

  19. Schmid, H.-P., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame. 113, 79–91 (1998)

    Google Scholar 

  20. Jenkins, K.W., Cant, R.S.: Curvature effects on flame kernels in a turbulent environment. Proc. Combust. Inst. 29, 2023–2029 (2002)

    Google Scholar 

  21. Tabor, G., Weller, H.G.: Large eddy simulation of premixed turbulent combustion using flame surface wrinkling model. Flow Turbul. Combust. 72, 1–27 (2004)

    MATH  Google Scholar 

  22. van Oijen, J.A., Groot, G.R.A., Bastiaans, R.J.M., de Goey, L.P.H.: A flamelet analysis of the burning velocity of premixed turbulent expanding flames. Proc. Combust. Inst. 30, 657–664 (2005)

    Google Scholar 

  23. Thevenin, D.: Three-dimensional direct simulations and structure of expanding turbulent methane flames. Proc. Combust. Inst. 30, 629–637 (2005)

    Google Scholar 

  24. Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids. 18(5), 055102 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reactionzones regime. Combust. Flame. 145, 415–434 (2006)

    Google Scholar 

  26. Klein, M., Chakraborty, N., Cant, R.S.: Effects of turbulence on self-sustained combustion in premixed flame kernels, a direct numerical simulation (DNS) study. Flow Turbul. Combust. 81, 583–607 (2008)

    MATH  Google Scholar 

  27. Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)

    Google Scholar 

  28. Dunstan, T.D., Jenkins, K.W.: Flame surface density distribution in turbulent flame kernels during the early stages of growth. Proc. Combust. Inst. 32, 1427–1434 (2009)

    Google Scholar 

  29. Dunstan, T.D., Jenkins, K.W.: The effects of hydrogen substitution on turbulent premixed methane-air kernels using direct numerical simulationnt. Int. J. Hydrog. Energy. 34, 8389–8404 (2009)

    Google Scholar 

  30. Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 32, 1435–1443 (2009)

    Google Scholar 

  31. Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. part 2, Early flame development after sparking. Combust. Flame. 158, 1215–1226 (2011)

    Google Scholar 

  32. Colin, O., Truffin, K.: A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proc. Combust. Inst. 33, 3097–3104 (2011)

    Google Scholar 

  33. Ahmed, I., Swaminathan, N.: Simulation of spherically expanding turbulent premixed flames. Combust. Sci.Technol. 185, 1509–1540 (2013)

    Google Scholar 

  34. Ahmed, I., Swaminathan, N.: 2014, Simulation of turbulent explosion of hydrogen-air mixtures. Int. J. Hydrog. Energy. 39, 9562–9572 (2014)

    Google Scholar 

  35. Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids. 086104, (2018)

  36. Alqallaf, A., Klein, M., Chakraborty, N.: Effects of Lewis number on the evolution of curvature in spherically expanding turbulent premixed flames. Fluids. 4, 12 (2019). https://doi.org/10.3390/fluids4010012

    Article  Google Scholar 

  37. Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A Direct Numerical Simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Combust. Sci. Technol. (2019). https://doi.org/10.1080/00102202.2019.1576649

    Google Scholar 

  38. Poinsot, T.J., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 45–73 (1992)

    Google Scholar 

  39. Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)

    Google Scholar 

  40. Rutland, C., Trouvé, A.: Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)

    Google Scholar 

  41. Fries, D., Ochs, B.A., Saha, A., Ranjan, D., Menon, S.: Flame speed characteristics of turbulent expanding flames in a rectangular channel. Combust. Flame. 199, 1–13 (2018)

    Google Scholar 

  42. Sahafzadeh, M., Dworkin, S.B., Kostiuk, L.W.: Predicting the reneou of a premixed flame subjected to unsteady stretch rates. Combust. Flame. 196, 237–248 (2018)

    Google Scholar 

  43. Echekki, T., Chen, J.H.: Unsteady Strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996)

    Google Scholar 

  44. Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flame. Proc. Combust. Inst. 27, 819–826 (1998)

    Google Scholar 

  45. Echekki, T., Chen, J.H.: Analysis of the Contribution of Curvature to Premixed Flame Propagation. Combust. Flame. 108, 308–311 (1999)

    Google Scholar 

  46. Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004)

    Google Scholar 

  47. Chakraborty, N., Cant, R.S.: Influence of Lewis Number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)

    MATH  Google Scholar 

  48. Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004)

    Google Scholar 

  49. Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005)

    Google Scholar 

  50. Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)

    MATH  Google Scholar 

  51. Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH4-air and H2-air flames, A comparative study. Combust. Flame. 154, 259–280 (2008)

    Google Scholar 

  52. Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008)

    Google Scholar 

  53. Mizutani, Y., Nishimoto, T.: Combustion of fuel vapor-drop-air systems: Part II-spherical flames in a vessel. Combust. Flame. 20, 351–357 (1973)

    Google Scholar 

  54. Polymeropoulos, C.E.: Flame propagation in aerosols of fuel droplets, fuel vapor and air. Combust. Sci. Technol. 40, 217–232 (1984)

    Google Scholar 

  55. Silverman, I., Greenberg, J.B., Tambour, Y.: Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame. 93, 97–118 (1993)

    Google Scholar 

  56. Greenberg, J.B., Silverman, I., Tambour, Y.: On droplet enhancement of the burning velocity of laminar premixed spray flames. Combust. Flame. 113, 271–273 (1998)

    Google Scholar 

  57. Burgoyne, J.H., Cohen, L.: The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. London. Ser. A. 225, 375–392 (1954)

    Google Scholar 

  58. Szekely, G.A., Faeth, G.M.: Effects of envelope flames on drop gasification rates in turbulent diffusion flames. Combust. Flame. 49, 255–259 (1983)

    Google Scholar 

  59. Ballal, D.R., Lefebvre, A.H.: Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symp. Combust. 18, 321–328 (1981)

    Google Scholar 

  60. Reveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combust. Flame. 121, 75–90 (2000)

    Google Scholar 

  61. Nakamura, M., Akamatsu, F., Kurose, R., Katsuki, M.: Combustion mechanism of liquid fuel spray in a gaseous flame. Phys. Fluids. 17(1–14), (2005)

    MATH  Google Scholar 

  62. Watanabe, H., Kurose, R., Hwang, S.M., Akamatsu, F.: Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame. 148, 234–248 (2007)

    Google Scholar 

  63. Reveillon, J., Demoulin, F.X.: Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31, 2319–2326 (2007)

    Google Scholar 

  64. Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31 II, 2335–2342 (2007)

    Google Scholar 

  65. Xia, J., Luo, K.H.: Direct numerical simulation of inert droplet effects on scalar dissipation rate in turbulent reacting and non-reacting shear layers. Flow, Turbul. Combust. 84, 397–422 (2010)

    MATH  Google Scholar 

  66. Fujita, A., Watanabe, H., Kurose, R., Komori, S.: Two-dimensional direct numerical simulation of spray flames - Part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel. 104, 515–525 (2013)

    Google Scholar 

  67. Wacks, D., Chakraborty, N.: Flame structure and propagation in turbulent flame-droplet interaction: A Direct Numerical Simulation analysis. Flow, Turbul. Combust. 96, 1053–1081 (2016)

    Google Scholar 

  68. Wacks, D., Chakraborty, N.: Flow topology and alignments of scalar gradients and vorticity in turbulent spray flames: A Direct Numerical Simulation analysis. Fuel. 184, 922–947 (2016)

    Google Scholar 

  69. Wacks, D., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: A Direct Numerical Simulation study. Flow, Turbul. Combust. 96, 573–607 (2016)

    Google Scholar 

  70. Wang, Y., Rutland, C.J.: Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30, 893–900 (2005)

    Google Scholar 

  71. Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32, 2275–2282 (2009)

    Google Scholar 

  72. Wandel, A.P., Chakraborty, N., Mastorakos, E.: Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32, 2283–2290 (2009)

    Google Scholar 

  73. Wandel, A.P.: Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame. 161, 2579–2600 (2014)

    Google Scholar 

  74. Neophytou, A., Mastorakos, E., Cant, R.S.: The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame. 159, 641–664 (2012)

    Google Scholar 

  75. Neophytou, A., Mastorakos, E., Cant, R.S.: DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame. 157, 1071–1086 (2010)

    Google Scholar 

  76. Tarrazo, E.F., Sánchez, A.L., Liñán, A., Williams, F.A.: A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame. 147, 32–38 (2006)

    Google Scholar 

  77. Malkeson, S.P., Chakraborty, N.: Statistical analysis of displacement speed in turbulent stratified flames: A direct numerical simulation study. Combust. Sci. Technol. 182, 1841–1883 (2010)

    Google Scholar 

  78. Swaminathan, N., Bray, K.N.C.: Turbulent Premixed Flames, p. 5. Cambridge University Press, NewYork (2011)

    Google Scholar 

  79. Kumar, K., Freeh, J.E., Sung, C.J., Huang, Y.: Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures. J. Propuls. Power. 23, 428–436 (2007)

    Google Scholar 

  80. Chaos, M., Kazakov, A., Zhao, Z., Dryer, F.L.: A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39, 399–414 (2007)

    Google Scholar 

  81. Chakraborty, N., Cant, R.S.: A-Priori Analysis of the curvature and propagation terms of the Flame Surface Density transport equation for Large Eddy Simulation. Phys. Fluids. 19, 105101 (2007)

    MATH  Google Scholar 

  82. Chakraborty, N., Cant, R.S.: Direct Numerical Simulation analysis of the Flame Surface Density transport equation in the context of Large Eddy Simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)

    Google Scholar 

  83. Wray, A.A., Minimal storage time advanced schemes for spectral methods. California (1990)

  84. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    MathSciNet  MATH  Google Scholar 

  85. Rotexo-Softpredict-Cosilab, GmbH and Co. KG Bad Zwischenahn, Germany

  86. Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust. Flame. 156, 1627–1640 (2009)

    Google Scholar 

  87. Rogallo, R.S.: Numerical experiments in homogeneous turbulence, California (1981)

  88. Peters, N.: Turbulent combustion, Cambridge monograph on mechanics, 1st edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  89. Grout, R.W.: An age extended progress variable for conditioning reaction rates. Phys. Fluids. 19, 105107 (2007)

    MATH  Google Scholar 

  90. Pera, C., Chevillard, S., Reveillon, J.: Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame. 160, 1020–1032 (2013)

    Google Scholar 

  91. Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E. 76, 056316 (2007)

    Google Scholar 

  92. Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 1st Edition, R.T. Edwards Inc, Philadelphia (2001)

    Google Scholar 

Download references

Funding

The financial support of the Republic of Turkey Ministry of National Education and EPSRC (EP/K025163/1, EP/R029369/1) and the computational support of Rocket and ARCHER are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulcan Ozel Erol.

Ethics declarations

This work did not involve any active collection of human data.

Competing Interests

We have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozel Erol, G., Hasslberger, J., Klein, M. et al. Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists. Flow Turbulence Combust 103, 913–941 (2019). https://doi.org/10.1007/s10494-019-00035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00035-x

Keywords

Navigation