Skip to main content
Log in

Impact of the Acoustic Forcing Level on the Transfer Matrix of a Turbulent Swirling Combustor with and Without Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Thermoacoustic instabilities are a major issue for industrial and domestic burners. One possible framework to study these instabilities is to represent the system by a network of Dimensionless Acoustic Transfer Matrices (DATM) that link pressure and velocity fluctuations upstream and downstream each element of the network. In this article, the DATM coefficients of a turbulent swirling combustor are determined for a thermoacoustically stable configuration using harmonic acoustic forcing. Since the dynamics of the whole system is controlled by nonlinearities, the impact of the forcing level needs to be considered. The four DATM coefficients are thus measured for reactive operating conditions (premixed flame) and cold flow conditions for increasing acoustic excitation levels. The velocity level is controlled by a hot wire located inside the injector, in a region with a laminar top-hat velocity profile. The upstream and downstream specific acoustic impedances are also measured. Results for the acoustic response under cold flow conditions are first presented. In this case, the DATM coefficients are found to be independent of the forcing level except for the modulus of the coefficients linking the downstream velocity fluctuations to the upstream pressure and velocity fluctuations. This behavior is linked to the nonlinear response of the injector but is not entirely captured by the acoustic network model developed in this work. For reactive operating conditions, measurements indicate that all DATM coefficients depend on the forcing level to a certain extent. The Flame Describing Function, linking heat release rate fluctuations to velocity fluctuations, is used to reconstruct the transfer matrix through an acoustic network model. This network model accurately predicts the trend of the measured coefficients but the impact of the forcing level is not reproduced. Saturation for reactive operating conditions is shown to be not only related to the nonlinear flame response but also to the nonlinear injector dynamics. Finally, a data-driven reconstruction of the FDF using the acoustic network model along with the hot wire and microphone measurements is performed. This data-driven acoustic reconstruction is subsequently compared with the FDF determined with an optical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Keller, J.J.: AIAA J. 33(12), 2280 (1995)

    Article  Google Scholar 

  2. Dowling, A.P., Stow, S.R.: J. Propul. Power 19(5), 751 (2003)

    Article  Google Scholar 

  3. Sattelmayer, T., Polifke, W.: Combust. Sci. Technol. 175(3), 453 (2003)

    Article  Google Scholar 

  4. Nicoud, F., Benoit, L., Sensiau, C., Poinsot, T.: AIAA J. 45(2), 426 (2007)

    Article  Google Scholar 

  5. Camporeale, S.M., Fortunato, B., Campa, G.: J. Eng. Gas Turbines Power 133(1), 011506 (2011)

    Article  Google Scholar 

  6. Candel, S.: Combust, Proc. Inst. 29, 1 (2002)

    Article  Google Scholar 

  7. Dowling, A.P.: J. Fluid Mech. 346, 271 (1997)

    Article  MathSciNet  Google Scholar 

  8. Noiray, N., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 615, 139 (2008)

    Article  Google Scholar 

  9. Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 158 (10), 1980 (2011)

    Article  Google Scholar 

  10. Ćosić, B., Moeck, J.P., Paschereit, C.O.: Combust. Sci. Technol. 186, 713 (2014)

    Article  Google Scholar 

  11. Laera, D., Schuller, T., Prieur, K., Durox, D., Camporeale, S.M.: Combust. Flame 184, 136 (2017)

    Article  Google Scholar 

  12. Silva, C.F., Nicoud, F., Schuller, T., Durox, D., Candel, S.: Combust. Flame 160(9), 1743 (2013)

    Article  Google Scholar 

  13. Schuller, T., Durox, D., Candel, S.: Combust. Flame 134, 21 (2003)

    Article  Google Scholar 

  14. Preetham, S.H., Hemchandra, S., Lieuwen, T.: J. Propul. Power 24(6), 1390 (2008)

    Article  Google Scholar 

  15. Krediet, H.J., Beck, C.H., Krebs, W., Schimek, S., Paschereit, C.O.: Combust. Sci. Technol. 184(7-8), 888 (2012)

    Article  Google Scholar 

  16. Han, X., Li, J., Morgans, A.S.: Combust. Flame 162(10), 3632 (2015)

    Article  Google Scholar 

  17. Poinsot, T.: Combust, Proc. Inst. 36(1), 1 (2017)

    Article  MathSciNet  Google Scholar 

  18. Han, X., Morgans, A.S.: Combust. Flame 162(5), 1778 (2015)

    Article  Google Scholar 

  19. Li, J., Xia, Y., Morgans, A.S., Han, X.: Combust. Flame 185, 28 (2017)

    Article  Google Scholar 

  20. Noiray, N., Schuermans, B.: Proc. Roy. Soc. A 469(2151), 20120535 (2013)

    Article  Google Scholar 

  21. Ghirardo, G., Ćosić, B., Juniper, M.P., Moeck, J.P.: Nonlinear Dyn. 82(1-2), 9 (2015)

    Article  Google Scholar 

  22. Ćosić, B., Terhaar, S., Moeck, J.P., Paschereit, C.O.: Combust. Flame 162(4), 1046 (2015)

    Article  Google Scholar 

  23. Giuliani, F., Lang, A., Johannes Gradl, K., Siebenhofer, P., Fritzer, J.: J. Eng. Gas Turbines Power 134, 021602 (2012)

    Article  Google Scholar 

  24. Hurle, I.R., Price, R.B., Sugden, T.M., Thomas, A.: Proc. R. Soc. A 303, 409 (1968)

    Article  Google Scholar 

  25. Paschereit, C.O., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 1998, pp 1–10 (1998)

  26. Paschereit, C.O., Schuermans, B., Polifke, W., Mattson, O.: J. Eng. Gas Turbines Power 124, 239 (2002)

    Article  Google Scholar 

  27. Fischer, A., Hirsch, C., Sattelmayer, T.: J. Sound Vib. 298(1-2), 73 (2006)

    Article  Google Scholar 

  28. Alemela, P., Fanca, D., Ettner, F., Hirsch, C., Sattelmayer, S.:. In: Proceedings of the ASME Turbo Expo 2008, pp 1–9 (2008)

  29. Truffin, K., Poinsot, T.: Combust. Flame 142(4), 388 (2005)

    Article  Google Scholar 

  30. Abom, M.: J. Sound Vib. 155(1), 185 (1992)

    Article  Google Scholar 

  31. Munjal, M.L.: Acoustics of ducts and mufflers. Wiley, New York (1987)

    Google Scholar 

  32. Schuermans, B., Polifke, W., Paschereit, C.O., van der Linden, J.H.:. In: Proceedings of the ASME Turbo Expo 2000 (2000)

  33. Polifke, W., Poncet, A., Paschereit, C., Döbbeling, K.: J. Sound Vib. 245, 483 (2001)

    Article  Google Scholar 

  34. Gentemann, A., Polifke, W.:. In: Proceedings of the ASME Turbo Expo, p 2007 (2007)

  35. Duchaine, F., Selle, L., Poinsot, T.: Combust. Flame 158(12), 2384 (2011)

    Article  Google Scholar 

  36. Tay Wo Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 2010 (2010)

  37. Tay-Wo-Chong, L., Bomberg, S., Ulhaq, A., Polifke, W.: J. Eng. Gas Turbines Power 134(2), 021502 (2012)

    Article  Google Scholar 

  38. Lieuwen, T.C: Unsteady combustor physics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  39. Durox, D., Schuller, T., Noiray, N., Candel, S.: Proc. Combust. Inst. 32, 1391 (2009)

    Article  Google Scholar 

  40. Chung, J.Y., Blaser, D.A., Acoust, J.: Soc. Am. 68, 907 (1980)

    Google Scholar 

  41. Scarpato, A., Tran, N., Ducruix, S., Schuller, T.: J. Sound Vib. 331, 276 (2012)

    Article  Google Scholar 

  42. Guedra, M., Penelet, G., Lotton, P., Dalmont, J., Acoust, J.: Soc. Am. 130(7), 145 (2011)

    Google Scholar 

  43. Poinsot, T., Veynante, D.: Theoretical and numerical combustion (2005)

  44. Gaudron, R., Gatti, M., Mirat, C., Schuller, T.: J. Eng. Gas Turbines Power. 141(5), 051016 (2019)

    Article  Google Scholar 

  45. Howe, M.S.: Lond, Proc. R. Soc. A 366, 205 (1979)

    Article  Google Scholar 

  46. Howe, M.S.: Acoustics of fluid-structure interactions. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  47. Jing, X., Sun, X.: AIAA J. 38(9), 1573–1578 (2000)

    Article  Google Scholar 

  48. Scarpato, A.: Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow. Ph.D. thesis, Ecole Centrale Paris (2014)

  49. Luong, T., Howe, M.S., McGowan, R.S.: J. Fluids Struct. 21(8), 769 (2005)

    Article  Google Scholar 

  50. Gaudron, R.: Acoustic response of premixed flames submitted to harmonic sound waves. Ph.D. thesis, Université Paris-Saclay (2018)

  51. Heckl, M.: Acoustica 72, 63 (1990)

    Google Scholar 

  52. Schuller, T., Tran, N., Noiray, N., Durox, D., Ducruix, S., Candel, S.:. In: Proceedings of the ASME Turbo Expo 2009, pp GT2009–59390 (2009)

  53. Kruger, U., Hüren, J., Hoffmann, S., Krebs, W., Flohr, P., Bohn, D.: J. Eng. Gas Turbines Power 123(3), 557 (2001)

    Article  Google Scholar 

  54. Su, J., Garmory, A., Carrotte, J.:. In: Proceedings of the ASME Turbo Expo 2015 (2015)

  55. Hirschberg, A.: Introduction to aero-acoustics of internal flow. Tech. rep (2001)

  56. Gentemann, A., Fischer, A., Evesque, S., Polifke, W.:. In: 9th AIAA/CEAS aeroacoustics conference and exhibit, May 12-14, 2003, Hilton Head, South Carolina, pp 1–11 (2003)

  57. Polifke, W., Fischer, A., Sattelmayer, T.: J. Eng. Gas Turbines Power 125, 20 (2003)

    Article  Google Scholar 

  58. Ni, F., Miguel-Brebion, M., Nicoud, F., Poinsot, T.: AIAA J. 55(4), 1205 (2017)

    Article  Google Scholar 

  59. Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 157, 1698 (2010)

    Article  Google Scholar 

  60. Gatti, M., Gaudron, R., Mirat, C., Schuller, T.:. In: Proceedings of the ASME Turbo Expo 2017, pp 1–11 (2017)

  61. Polifke, W., Lawn, C.J.: Combust. Flame 151(3), 437 (2007)

    Article  Google Scholar 

Download references

Funding

This work is supported by Agence Nationale de la Recherche, NOISEDYN project (ANR-14-CE35-0025-01). This project has also received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gaudron.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudron, R., Gatti, M., Mirat, C. et al. Impact of the Acoustic Forcing Level on the Transfer Matrix of a Turbulent Swirling Combustor with and Without Flame. Flow Turbulence Combust 103, 751–771 (2019). https://doi.org/10.1007/s10494-019-00033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00033-z

Keywords

Navigation