Noise Sources of Lean Premixed Flames

  • Konrad PauschEmail author
  • Sohel Herff
  • Feichi Zhang
  • Henning Bockhorn
  • Wolfgang Schröder
Original research


The thermoacoustic sound generation mechanisms of lean premixed laminar and turbulent flames are investigated by a two-step approach. First, the conservation equations of a reacting compressible fluid are solved. This solution is used to determine the acoustic source terms of the acoustic perturbation equations (APE). Second, the contributions of the different source terms to the amplitude and phase of the acoustic pressure signal are analyzed by solving the APE in a computational aeroacoustics (CAA) simulation. The results show that it is not sufficient to only consider the unsteady heat release rate fluctuations which occur in the substantial pressure-density relation. The acceleration of density gradients occurring at the flame front is a significant contributor to the overall sound emission. For the investigated laminar and turbulent flames the amplitude and phase of the acoustic pressure signal can only be predicted accurately if both source terms are included in the acoustic analysis.


Thermoacoustics Combustion noise Combustion instabilities CAA 



This study was supported by the DFG funded grants SCHR 309/69, SCHR 309/43, and BO 693/26-2. The authors are grateful for the computing resources provided by the High Performance Computing Center Stuttgart (HLRS) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS) and we acknowledge PRACE for awarding us access to resource JUQUEEN [63] based in Germany at Jülich Supercomputing Centre.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflicts of interest.


  1. 1.
    Lieuwen, T., Yang, V.: Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Progress in Aeronautics and Astronautics Series, vol. 210. AIAA, Reston (2005)Google Scholar
  2. 2.
    Bomberg, S., Emmert, T., Polifke, W.: Thermal versus acoustic response of velocity sensitive premixed flames. Proc. Combust. Inst. 35, 3185–3192 (2015)Google Scholar
  3. 3.
    Hoeijmakers, M., Kornilov, V., Lopez Arteaga, I., de Goey, P., Nijmeijer, H.: Intrinsic instability of flame-acoustic coupling. Combust. Flame 161, 2860–2867 (2014)Google Scholar
  4. 4.
    Strahle, W.: A review of combustion generated noise. AIAA Paper, 73–1023 (1973)Google Scholar
  5. 5.
    Bake, F., Richter, C., Mühlbauer, B., Kings, N., Röhle, I., Thiele, F., Noll, B.: The entropy wave generator (ewg): a reference case on entropy noise. J. Sound Vib. 326(3), 574–598 (2009)Google Scholar
  6. 6.
    Marble, F., Candel, S.: Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55, 225–243 (1977)zbMATHGoogle Scholar
  7. 7.
    Schlimpert, S., Feldhusen, A., Grimmen, J.H., Roidl, B., Meinke, M., Schröder, W.: Hydrodynamic instability and shear layer effects in turbulent premixed combustion. Phys. Fluids 28(1) (2016)Google Scholar
  8. 8.
    Schlimpert, S., Hemchandra, S., Meinke, M., Schröder, W.: Hydrodynamic instability and shear layer effect on the response of an acoustically excited laminar premixed flame. Combust. Flame 162(2), 345–367 (2015)Google Scholar
  9. 9.
    Schlimpert, S., Koh, S.R., Pausch, K., Meinke, M., Schröder, W.: Analysis of combustion noise of a turbulent premixed slot jet flame. Combust. Flame 175(1), 292–306 (2017)Google Scholar
  10. 10.
    Dowling, A.P., Stow, S.: Acoustic analysis of gas turbine combustors. J. Propul. Power 19, 751–764 (2003)Google Scholar
  11. 11.
    Duran, I., Moreau, S., Nicoud, F., Livebardon, T., Bouty, E., Poinsot, T.: Combustion noise in modern aero-engines. J. Aerospace Lab 7(5), 1–11 (2014)Google Scholar
  12. 12.
    Hurle, I.R., Price, R.B., Sugden, T.M., Thomas, A.: Sound emission from open turbulent premixed flames. Proc. R. Soc. London, Ser. A 303, 409–427 (1968)Google Scholar
  13. 13.
    Poinsot, T.: Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)MathSciNetGoogle Scholar
  14. 14.
    Price, R.B., Hurle, I.R., Sugden, T.M.: Optical studies of the generation of noise in turbulent flames. Symp. (Int.) Combust. 12(1), 1093–1102 (1969)Google Scholar
  15. 15.
    Rayleigh, L.: The explanation of certain acoustical phenomena. Nature 18, 319–321 (1878)Google Scholar
  16. 16.
    Thomas, A., Williams, G.T.: Flame noise: sound emission from spark-ignited bubbles of combustible gas. Proc. R. Soc. London, Ser. A 294, 449–466 (1966)Google Scholar
  17. 17.
    Shivashankara, B., Strahle, W., Handley, J.: Evaluation of combustion noise scaling laws by an optical technique. AIAA J. 13(5), 623–627 (1975)Google Scholar
  18. 18.
    Haghiri, A., Talei, M., Brear, J., Hawkes, E.: Sound generation by turbulent premixed flames. J. Fluid. Mech. 843, 29–52 (2018)MathSciNetGoogle Scholar
  19. 19.
    Hirsch, C., Wäsle, J., Winkler, A., Sattelmayer, T.: A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31, 1435–1441 (2007)Google Scholar
  20. 20.
    Kotake, S., Takamoto, K.: Combustion noise: effects of the shape and size of burner nozzle. J. Sound Vib. 112(2), 345–354 (1987)Google Scholar
  21. 21.
    Kotake, S., Takamoto, K.: Combustion noise: effects of the velocity turbulence of unburned mixture. J. Sound Vib. 139(1), 9–20 (1990)Google Scholar
  22. 22.
    Rajaram, R., Lieuwen, T.: Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357–385 (2009)zbMATHGoogle Scholar
  23. 23.
    Swaminathan, N., Xu, G., Dowling, A.P., Balachandran, R.: Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80–115 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Crighton, D., Dowling, A., Williams, J.F., Heckl, M., Leppington, F.: Modern Methods in Analytical Acoustics. Springer, Berlin (1992)Google Scholar
  25. 25.
    Ihme, M., Pitsch, H., Bodony, D.: Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32(1), 1545–1553 (2009)Google Scholar
  26. 26.
    Bui, T.P., Ihme, M., Schröder, W., Pitsch, H.: Analysis of different sound source formulations to simulate combustion generated noise using a hybrid LES/APE-RF method. Int. J. Aeroacoustics 8, 95–124 (2009)Google Scholar
  27. 27.
    Bui, T.P., Schröder, W., Meinke, M.: Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comp. Fluids 37, 1157–1169 (2008)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Zhang, F., Habisreuther, P., Hettel, M., Bockhorn, H.: Numerical computation of combustion induced noise using compressible les and hybrid CFD/CAA methods. Acta Acust United Ac. 98, 120–134 (2012)Google Scholar
  29. 29.
    Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H., Paschereit, C.: On prediction of combustion generated noise with the turbulent heat release rate. Acta Acust United Ac. 99(6), 940–951 (2013)Google Scholar
  30. 30.
    Silva, C.F., Leyko, M., Nicoud, F., Moreau, S.: Assessment of combustion noise in a premixed swirled combustor via large-eddy simulation. Comput. Fluids 78, 1–9 (2013)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Merk, M., Gaudron, R., Silva, C., Gatti, M., Mirat, C., Schuller, T., Polifke, W.: Prediction of combustion noise of an enclosed flame by simultaneous identification of noise source and flame dynamics. Proc. Combust. Inst. 37(4), 5263–5270 (2019)Google Scholar
  32. 32.
    Nicoud, F., Poinsot, T.: Thermoacoustic instabilities: Should the rayleigh criterion be extended to include entropy changes? Combust. Flame 142(1-2), 153–159 (2005)Google Scholar
  33. 33.
    Brear, M.J., Nicoud, F., Talei, M., Giauque, A., Hawkes, E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 53–73 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Talei, M., Brear, M.J., Hawkes, E.R.: A comparative study of sound generation by laminar, combusting and non-combusting jet flows. Theor. Comp. Fluid Dyn. 28(4), 385–408 (2014)Google Scholar
  35. 35.
    Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188, 365–398 (2003)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)Google Scholar
  37. 37.
    Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)Google Scholar
  38. 38.
    Hartmann, D., Meinke, M., Schröder, W.: A level-set based adaptive-grid method for premixed combustion. Combust. Flame 158(7), 1318–1339 (2011)Google Scholar
  39. 39.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4), 199–228 (1992)Google Scholar
  40. 40.
    Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for cartesian hierarchical grid methods. Comp. Fluids 37, 1103–1125 (2008)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Hartmann, D., Meinke, M., Schröder, W.: The constrained reinitialization equation for level set methods. J. Comput. Phys. 229, 1514–1535 (2010)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–68 (2016)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)MathSciNetGoogle Scholar
  44. 44.
    Johansson, S.: High order finite difference operators with the summation by parts property based on DRP schemes. Tech. rep. (2004)Google Scholar
  45. 45.
    Hu, F., Hussaini, M., Manthey, J.: Low-dissipation and low-dispersion runge-kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–197 (1996)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Müller, U., Bollig, M., Peters, N.: Approximations for burning velocities and markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108, 349–356 (1997)Google Scholar
  47. 47.
    Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Nawroth, H., Paschereit, C.O.: High-speed flow field measurements of turbulent jet flames undergoing shear layer manipulation. AIAA Paper, 2016–1841 (2016)Google Scholar
  50. 50.
    Geiser, G., Hosseinzadeh, A., Nawroth, H., Zhang, F., Bockhorn, H., Habisreuther, P., Janicka, J., Paschereit, C.O., Schröder, W.: Thermoacoustics of a turbulent premixed flame. AIAA Paper, 2014–2476 (2014)Google Scholar
  51. 51.
    Ihme, M.: Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49(1), 277–310 (2017)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Keller, J.J.: Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33(12), 2280–2287 (1995)zbMATHGoogle Scholar
  53. 53.
    Strobio Chen, L., Bomberg, S., Polifke, W.: Propagation and generation of acoustic and entropy waves across a moving flame front. Combust. Flame 166, 170–180 (2016)Google Scholar
  54. 54.
    Ducruix, S., Durox, D., Candel, S.: Theoretical and experimental determinations of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28(1), 765–773 (2000)Google Scholar
  55. 55.
    Fleifil, M., Annaswamy, A., Ghoneim, Z., Ghoniem, A.: Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106(4), 487–510 (1996)Google Scholar
  56. 56.
    Schuller, T., Durox, D., Candel, S.: A unified model for the prediction of laminar flame transfer functions: comparisons between conical and v-flame dynamics. Combust. Flame 134(1–2), 21–34 (2003)Google Scholar
  57. 57.
    Zhang, F., Zirwes, T., Habisreuther, P., Bockhorn, H.: Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170–179 (2017)Google Scholar
  58. 58.
    Karimi, N., Brear, M.J., Jin, S.H., Monty, J.P.: Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 156(11), 2201–2212 (2009)Google Scholar
  59. 59.
    Schuller, T., Durox, D., Candel, S.: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135(4), 525–537 (2003)Google Scholar
  60. 60.
    Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194–218 (2011)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Talei, M., Brear, M.J., Hawkes, E.R.: A parametric study of sound generation by premixed laminar flame annihilation. Combust. Flame 159, 757–769 (2012)zbMATHGoogle Scholar
  62. 62.
    Pausch, K., Herff, S., Nawroth, H., Paschereit, C., Schröder, W.: Noise sources of a lean-premixed jet flame. AIAA Paper, 2018–4088 (2018)Google Scholar
  63. 63.
    Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre. Journal of large-scale research facilities 1(A1) (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.Engler-Bunte-Institute, Division of Combustion TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Forschungszentrum JülichJARA High-Performance ComputingJülichGermany

Personalised recommendations