Skip to main content
Log in

Large-Eddy Simulation of Sandia Flame D with Efficient Explicit Filtering

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A uniform Gaussian filter has been applied explicitly to the LES conservation equations for mass, momentum and mixture to simulate a piloted non-premixed methane-air flame (Sandia Flame D). Using a basic property of exponential functions, the three dimensional Gaussian filter is decomposed into the product of three one dimensional filters, greatly reducing the cost of filtering. Seven simulations on three different grids have been performed to investigate the influence of grid refinement with a purely implicit filter, the effects of explicit filtering with increasing filter width and the effect of grid refinement at constant filter-size. Overall, consistent results have been achieved at a cost that is moderate with implicit or explicit filtering, so that explicit filtering can be applied in cases where the numerical error should be independent of the modelling error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)

    Article  Google Scholar 

  2. Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdiċ, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., et al.: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame 162(11), 4264–4282 (2015)

    Article  Google Scholar 

  3. Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)

    Article  Google Scholar 

  4. Jones, W., Prasad, V.: LES-pdf simulation of a spark ignited turbulent methane jet. Proc. Combust. Inst. 33(1), 1355–1363 (2011)

    Article  Google Scholar 

  5. Pitsch, H., Steiner, H.: Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proc. Combust. Inst. 28(1), 41–49 (2000)

    Article  Google Scholar 

  6. Stein, O., Olenik, G., Kronenburg, A., Marincola, F.C., Franchetti, B., Kempf, A., Ghiani, M., Vascellari, M., Hasse, C.: Towards comprehensive coal combustion modelling for LES. Flow Turbul. Combust. 90(4), 859–884 (2013)

    Article  Google Scholar 

  7. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(1), 35 (2004)

    Article  Google Scholar 

  8. Schumann, U., Sweet, R.A.: A direct method for the solution of poisson’s equation with neumann boundary conditions on a staggered grid of arbitrary size. J. Comput. Phys. 20(2), 171–182 (1976)

    Article  MathSciNet  Google Scholar 

  9. Celik, I., Klein, M., Freitag, M., Janicka, J.: Assessment measures for URANS/DES/LES: an overview with applications. J. Turbul. (7), N48 (2006)

  10. Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14(6), L41–L44 (2002)

    Article  MATH  Google Scholar 

  11. Kempf, A., Lindstedt, R., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144(1–2), 170–189 (2006)

    Article  Google Scholar 

  12. Kempf, A.M., Geurts, B.J., Ma, T., Pettit, M., Stein, O.: Quality issues in combustion LES. J. Sci. Comput. 49(1), 51–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nguyen, T., Proch, F., Wlokas, I., Kempf, A.: Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique. Flow Turbul. Combust. 97(1), 191–230 (2016)

    Article  Google Scholar 

  14. Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323–341 (2003)

    Article  MATH  Google Scholar 

  15. Jeanmart, H., Winckelmans, G.: Comparison of recent dynamic subgrid-scale models in turbulent channel flow. In: Proceedings of the Summer Program 2002, pp 105–116 (2002)

  16. Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)

    Article  MATH  Google Scholar 

  17. Bose, S.T., Moin, P., You, D.: Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids 22(10), 105,103 (2010)

    Article  Google Scholar 

  18. Lund, T.: The use of explicit filters in large eddy simulation. Comput. Math. Appl. 46(4), 603–616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Radhakrishnan, S., Bellan, J.: Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of two-phase volumetrically dilute flow with evaporation. J. Fluid Mech. 719, 230–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Radhakrishnan, S., Bellan, J.: Explicitly-filtered LES for the grid-spacing-independent and discretization-order-independent prediction of a conserved scalar. Comput. Fluids 111, 137–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Radhakrishnan, S., Bellan, J.: Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of compressible single-phase flow. J. Fluid Mech. 697, 399–435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gallagher, T.P., Sankaran, V.: Explicitly filtered LES of Bluff Body Stabilized Flames. In: 2018 AIAA Aerospace Sciences Meeting, p 0441 (2018)

  23. Domingo, P., Vervisch, L.: DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combust. Flame 177, 109–122 (2017)

    Article  Google Scholar 

  24. Wang, Q., Ihme, M.: Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017)

    Article  Google Scholar 

  25. Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27(1), 1087–1095 (1998)

    Article  Google Scholar 

  26. Cabra, R., Myhrvold, T., Chen, J., Dibble, R., Karpetis, A., Barlow, R.: Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29(2), 1881–1888 (2002)

    Article  Google Scholar 

  27. Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25(3), 528–536 (2004)

    Article  Google Scholar 

  28. Menon, S., Calhoon, W.H.: Subgrid mixing and molecular transport modeling in a reacting shear layer. In: Symposium (International) on Combustion, vol. 26, pp 59–66. Elsevier (1996)

  29. Möller, S.I., Lundgren, E., Fureby, C.: Large eddy simulation of unsteady combustion. In: Symposium (International) on Combustion, vol. 26, pp 241–248. Elsevier (1996)

  30. Poinsot, T.: Using direct numerical simulations to understand premixed turbulent combustion. In: Symposium (International) on Combustion, vol. 26, pp 219–232. Elsevier (1996)

  31. Bushe, W.K., Steiner, H.: Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows. Phys. Fluids 11(7), 1896–1906 (1999)

    Article  MATH  Google Scholar 

  32. Forkel, H., Janicka, J.: An efficient method for large-eddy simulation of turbulent diffusion flames. In: Proceedings of the Joint Meeting of the British, German and French Sections, pp 53–55 (1999)

  33. Jones, W., Kakhi, M.: PDF modeling of finite-rate chemistry effects in turbulent nonpremixed jet flames. Combust. Flame 115(1–2), 210–229 (1998)

    Article  Google Scholar 

  34. Kempf, A., Forkel, H., Chen, J.Y., Sadiki, A., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28(1), 35–40 (2000)

    Article  MATH  Google Scholar 

  35. Oijen, J.v., Goey, L.d.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)

    Article  Google Scholar 

  36. Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143(1–2), 56–78 (2005)

    Article  Google Scholar 

  37. McMurthy, P.A., Menon, S., Kerstein, A.R.: A linear eddy sub-grid model for turbulent reacting flows: Application to hydrogen-air combustion. In: Symposium (International) on Combustion, vol. 24, pp 271–278. Elsevier (1992)

  38. Navarro-Martinez, S., Kronenburg, A., Di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75(1–4), 245–274 (2005)

    Article  MATH  Google Scholar 

  39. Steiner, H., Bushe, W.: Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13(3), 754–769 (2001)

    Article  MATH  Google Scholar 

  40. Kronenburg, A., Cleary, M.: Multiple mapping conditioning for flames with partial premixing. Combust. Flame 155(1–2), 215–231 (2008)

    Article  Google Scholar 

  41. Rittler, A., Proch, F., Kempf, A.M.: LES of the sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models. Combust. Flame 162(4), 1575–1598 (2015)

    Article  Google Scholar 

  42. Bisetti, F., Blanquart, G., Mueller, M.E., Pitsch, H.: On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159(1), 317–335 (2012)

    Article  Google Scholar 

  43. Rittler, A., Deng, L., Wlokas, I., Kempf, A.: Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis. Proc. Combust. Inst. 36(1), 1077–1087 (2017)

    Article  Google Scholar 

  44. Sung, Y., Raman, V., Fox, R.O.: Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry. Chem. Eng. Sci. 66(19), 4370–4381 (2011)

    Article  Google Scholar 

  45. Rieth, M., Clements, A., Rabaçal, M., Proch, F., Stein, O., Kempf, A.: Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD. Proc. Combust. Inst. 36(2), 2181–2189 (2017)

    Article  Google Scholar 

  46. Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)

    Article  MathSciNet  Google Scholar 

  47. Barlow, R., Frank, J.: Piloted CH4/Air flames C, D, E, and F–Release 2.1 15-JUN-2007. http://www.sandia.gov/TNF/DataArch/FlameD/SandiaPilotDoc21.pdf

  48. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135 (1–2), 185–190 (2003)

    Article  Google Scholar 

  49. Masri, A., Dally, B., Barlow, R., Carter, C.: The structure of the recirculation zone of a bluff-body combustor. In: Symposium (International) on Combustion, vol. 25, pp 1301–1308. Elsevier (1994)

  50. Barlow, R.: Turbulent non-premixed flame workshop. http://www.sandia.gov/TNF/abstract.html (2018)

  51. Kempf, A.M., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085,106 (2011)

    Article  Google Scholar 

  53. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  54. Goodwin, D.G.: Cantera. http://code.google.com/p/cantera (2009)

  55. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., Qin, Z.: http://www.me.berkeley.edu/gri_mech (2000)

  56. Floyd, J., Kempf, A.M., Kronenburg, A., Ram, R.H.: A simple model for the filtered density function for passive scalar combustion LES. Combust. Theory Mod. 13(4), 559–588 (2009)

    Article  MATH  Google Scholar 

  57. Olbricht, C., Stein, O.T., Janicka, J., van Oijen, J.A., Wysocki, S., Kempf, A.M.: LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry. Fuel 96, 100–107 (2012)

    Article  Google Scholar 

  58. Inanc, E., Nguyen, M., Kaiser, S., Kempf, A.: High-resolution LES of a starting jet. Comput. Fluids 140, 435–449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kempf, A., Geurts, B.J., Oefelein, J.: Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame. Combust. Flame 158(12), 2408–2419 (2011)

    Article  Google Scholar 

  60. Proch, F., Domingo, P., Vervisch, L., Kempf, A.M.: Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180, 321–339 (2017)

    Article  Google Scholar 

  61. Rieth, M., Kempf, A., Kronenburg, A., Stein, O.: Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer. Fuel 212, 364–374 (2018)

    Article  Google Scholar 

  62. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  63. Kempf, A., Sadiki, A., Janicka, J.: Prediction of finite chemistry effects using large eddy simulation. Proceedings of the Combustion Institute 29(2), 1979–1985 (2002)

    Article  Google Scholar 

  64. Kempf, A., Flemming, F., Janicka, J.: Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30(1), 557–565 (2005)

    Article  Google Scholar 

  65. Renfro, M.W., Chaturvedy, A., King, G.B., Laurendeau, N.M., Kempf, A., Dreizler, A., Janicka, J.: Comparison of OH time-series measurements and large-eddy simulations in hydrogen jet flames. Combust. Flame 139(1–2), 142–151 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the computational resources provided on MagnitUDE (DFG grant INST 20876/209-1 FUGG) of the Center for Computational Sciences and Simulation (CCSS) operated by ZIM at the University of Duisburg-Essen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kempf.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertels, A., Kober, B., Rittler, A. et al. Large-Eddy Simulation of Sandia Flame D with Efficient Explicit Filtering. Flow Turbulence Combust 102, 887–907 (2019). https://doi.org/10.1007/s10494-018-9997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9997-0

Keywords

Navigation