Skip to main content
Log in

Experimental and Numerical Investigation of the Response of a Swirled Flame to Flow Modulations in a Non-Adiabatic Combustor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent combustion models for Large Eddy Simulation (LES) aims at predicting the flame dynamics. So far, they have been proven to predict correctly the mean flow and flame properties in a wide range of configurations. A way to challenge these models in unsteady situations is to test their ability to recover turbulent flames submitted to harmonic flow modulations. In this study, the Flame Transfer Function (FTF) of a CH4/H2/air premixed swirled-stabilized flame submitted to harmonic flowrate modulations in a non-adiabatic combustor is compared to the response computed using the Filtered TAbulated Chemistry for LES (F-TACLES) formalism. Phase averaged analysis of the perturbed flow field and flame response reveal that the velocity field determined with Particle Image Velocimetry measurements, the heat release distribution inferred from OH* images and the probability of presence of burnt gases deduced from OH-Planar Laser Induced Fluorescence measurements are qualitatively well reproduced by the simulations. However, noticeable differences between experiments and simulations are also observed in a narrow frequency range. A detailed close-up view of the flow field highlight differences in experimental OH* and numerical volumetric heat release rate distributions which are at the origin of the differences observed between the numerical and experimental FTF. These differences mainly originate from the outer shear layer of the swirling jet where a residual reaction layer takes place in the simulations which is absent in the experiments. Consequences for turbulent combustion modeling are suggested by examining the evolution of the perturbed flame brush envelope along the downstream distance of the perturbed flames. It is shown that changing the grid resolution and the flame subgrid scale wrinkling factor in these regions does not alter the numerical results. It is finally concluded that the combined effects of strain rate and enthalpy defect due to heat losses are the main factors leading to small but sizable differences of the flame response to coherent structures synchronized by the acoustic forcing in the outer shear layer of the swirling flow. These small differences in flame response lead in turn to a misprediction of the FTF at specific forcing frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Poinsot, T.: Proc. Combust. Inst. 36, 1 (2017)

    Article  Google Scholar 

  2. Komarek, T., Polifke, W.: J. Eng. Gas Turbines Power 132(6), 061503 (2010)

    Article  Google Scholar 

  3. Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 157 (9), 1698 (2010)

    Article  Google Scholar 

  4. Kim, K.T., Hochgreb, S.: Combust. Flame 158(12), 2482 (2011)

    Article  Google Scholar 

  5. Cosic, B., Terhaar, S., Moeck, J., Paschereit, C.: Combust. Flame 162, 1046 (2015)

    Article  Google Scholar 

  6. Noiray, N., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 615, 139 (2008)

    Article  Google Scholar 

  7. Tay-Wo-Chong, L., Bomberg, S., Ulhaq, A., Komarek, T., Polifke, W.: J. Eng. Gas Turbines Power 134(2), 021502 (2012)

    Article  Google Scholar 

  8. Iudiciani, P., Duwig, C.: Flow Turbul. Combust. 86, 639 (2011)

    Article  Google Scholar 

  9. Palies, P., Schuller, T., Durox, D., Gicquel, L., Candel, S.: Phys. Fluids 23(037101), 15 (2011)

    Google Scholar 

  10. Krediet, H., Beck, C., Krebs, W., Schimek, S., Paschereit, C., Kok, J.: Combust. Sci. Technol. 184(7-8), 888 (2012)

    Article  Google Scholar 

  11. Tay-Wo-Chong, L., Polifke, W.: J. Eng. Gas Turbines Power 135(2), 021502 (2013)

    Article  Google Scholar 

  12. Hermeth, S., Staffelbach, G., Gicquel, L., Anisimov, V., Cirigliano, C., Poinsot, T.: Combust. Flame 161(1), 184 (2014)

    Article  Google Scholar 

  13. Bauerheim, M., Staffelbach, G., Worth, N., Dawson, J., Gicquel, L., Poinsot, T.: Proc. Combust. Inst. 35, 3355 (2015)

    Article  Google Scholar 

  14. Han, X., Morgans, A.S.: Combust. Flame 162, 1778 (2015)

    Article  Google Scholar 

  15. Huang, Y., Yang, V.: Prog. Energy Combust. Sci. 35(4), 293 (2009)

    Article  MathSciNet  Google Scholar 

  16. Candel, S., Durox, D., Schuller, T., Bourgouin, J.F., Moeck, J.P.: Annu. Rev. Fluid Mech. 46, 147 (2014)

    Article  Google Scholar 

  17. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion (RT Edwards, Inc.) (2005)

  18. Pitsch, H.: Rev, Annu. Fluid Mech. 38, 453 (2006)

    Article  Google Scholar 

  19. Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdić, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., et al.: Combust. Flame 162(11), 4264 (2015)

    Article  Google Scholar 

  20. Tay Wo Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 2010, ed. by ASME (ASME Turbo Expo 2010 : Power for Land, Sea and Air, June 14-18, 2010, Glasgow, UK). GT2010-22769 (2010)

  21. Tay Wo Chong, L., Polifke, W.: J. Eng. Gas Turbines Power 135(9 pages), 021502 (2013)

    Article  Google Scholar 

  22. AVBP website. www.cerfacs.fr/avbp7x/

  23. Legier, J.P., Poinsot, T., Veynante, D.:. In: Proceedings of the summer program, pp 157–168 (2000)

  24. Komarek, T., Chong, L.T.W., Zellhuber, M., Huber, A., Polifke, W.: In: Int. Conf. on jets, wakes and separated flows, Technical University of Berlin (2008)

  25. Chong, L.T.W., Komarek, T., Zellhuber, M., Lenz, J., Hirsch, C., Polifke, W.: In: Proceedings of European Comb. Meeting (2009)

  26. Keppeler, R., Pfitzner, M., Chong, L.T.W., Komarek, T., Polifke, W.: In: Proceedings of ASME Turbo Expo, pp 457–467 (2012)

  27. Tay Wo Chong, L., Komarek, T., Zellhuber, M., Hirsch, C., Polifke, W.: Flow Turbul. Combust. 97, 263 (2016)

    Article  Google Scholar 

  28. Tay Wo Chong, L., Scarpato, A., Polifke, W.: In: GT2017-63357 in Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017 June 26-30, 2017, Charlotte, NC, USA (2017)

  29. Guiberti, T.F., Durox, D., Scouflaire, P., Schuller, T.: Proc. Combust. Inst. 35(2), 1385 (2015)

    Article  Google Scholar 

  30. Mercier, R., Guiberti, T., Chatelier, A., Durox, D., Gicquel, O., Darabiha, N., Schuller, T., Fiorina, B.: Combust. Flame 171, 42 (2016)

    Article  Google Scholar 

  31. Code_Saturne website. code-saturne.org/cms/

  32. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Symp. Combust. 27(1), 917 (1998)

    Article  Google Scholar 

  33. Fureby, C.: Proc. Combust. Inst. 30(1), 593 (2005)

    Article  Google Scholar 

  34. Balachandran, R., Ayoola, B., Kaminski, C., Dowling, A., Mastorakos, E.: Combust. and Flame 143(1), 37 (2005)

    Article  Google Scholar 

  35. Kedia, K., Altay, H., Ghoniem, A.: Proc. Combust. Inst. 33, 1113 (2011)

    Article  Google Scholar 

  36. Mejia, D., Selle, L., Bazile, R., Poinsot, T.: Proc. Combust. Inst. 35, 3201 (2015)

    Article  Google Scholar 

  37. Kedia, K., Ghoniem, A.: Proc. Combust. Inst. 35, 1065 (2015)

    Article  Google Scholar 

  38. Moureau, V., Domingo, P., Vervisch, L.: Comptes Rendus Mé,canique 339(2), 141 (2011)

    Article  Google Scholar 

  39. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  40. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: Combust. Flame 157(3), 465 (2010)

    Article  Google Scholar 

  41. Mercier, R., Auzillon, P., Moureau, V., Darabiha, N., Gicquel, O., Veynante, D., Fiorina, B.: Flow Turbul. Combust. 93(2), 349 (2014)

    Article  Google Scholar 

  42. Franzelli, B., Fiorina, B., Darabiha, N.: Proc. Combust. Inst. 34(1), 1659 (2013)

    Article  Google Scholar 

  43. Lindstedt, P.: 12 Month progress report 1, tech. rep. tr-96 009. Tech. rep. Brite Euram Program Project BRPR950056 (1997)

  44. Charlette, F., Meneveau, C., Veynante, D.: Combust. Flame 131(1), 159 (2002)

    Article  Google Scholar 

  45. Palies, P., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 672, 545 (2011)

    Article  Google Scholar 

  46. Durox, D., Schuller, T., Candel, S.: Proc. Combust. Inst. 30, 1717 (2005)

    Article  Google Scholar 

  47. Oberleithner, K., Schmiek, S., Paschereit, C.: Combust. Flame 162, 86 (2015)

    Article  Google Scholar 

  48. Schuller, T., Durox, D., Candel, S.: Combust. Flame 134, 21 (2003)

    Article  Google Scholar 

  49. Preetham, Hemchandra, S., Lieuwen, T.: J. Propuls. Power 24(6), 1390 (2008)

    Article  Google Scholar 

  50. Bunce, N.A., Quay, B.D., Santavicca, D.A.: J. Eng. Gas Turbines Power 136(2), 021503 (2013)

    Article  Google Scholar 

  51. Armitage, C., Balachandran, R., Mastorakos, E., Cant, R.: Combust. Flame 146(3), 419 (2006)

    Article  Google Scholar 

  52. Hall, J.M., Petersen, E.L.: In. J. Chem. Kinet. 38(12), 714 (2006)

    Article  Google Scholar 

  53. Klarmann, N., Sattelmayer, T., Weiqung, G., Magni, F.: AIAA paper (2016-2120) (2016)

  54. Breda, P., Zips, J., Pfitzner, M.: In: Proceedings of the 3rd World congress on momentum, heat and mass transfer (MHMT’18) (2018)

Download references

Acknowledgements

Vincent Moureau and Ghislain Lartigue from CORIA are acknowledged for providing the YALES2 flow solver through the SUCCESS scientific group.

Funding

This work was performed using HPC resources from GENCI-IDRIS (Grants 2015-x20152b0164 and 2016-x2016b0164). This work was supported by the ANR-10-EESI-0005 Grant of the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Chatelier.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatelier, A., Guiberti, T., Mercier, R. et al. Experimental and Numerical Investigation of the Response of a Swirled Flame to Flow Modulations in a Non-Adiabatic Combustor. Flow Turbulence Combust 102, 995–1023 (2019). https://doi.org/10.1007/s10494-018-9995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9995-2

Keywords

Navigation