Skip to main content
Log in

Surface Orientation Effect on Local Heat Transfer by Round Water Jet Impingement

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper describes local heat transfer for a round water jet on upward-facing and downward-facing static plates. Impinging liquid jets have high heat transfer rates. One of the technological issues in the steel making process is uniformity in cooling between the top and bottom sides of a plate. The objective of this study is to investigate the surface orientation effect on transient heat transfer experimentally. Experiments were conducted for a range of water flow rate, surface orientation. Both surface orientations were conducted on the same apparatus. The heat transfer plate was stainless steel to deal with both supercritical flow and subcritical flow regions. The plate length was wide for laboratory scale. Initial plate temperature was 800 degrees Celsius. Pipe Reynolds numbers were laminar flow regime. Inverse solution was employed to estimate transient local surface temperature and heat flux. Heat transfers between upward-facing and downward-facing surfaces are the same in the order of magnitude at downward-facing surface flow rate from 1.2 times to twice that of upward-facing surface. Local downward-facing surface temperature is higher than that of upward-facing temperature at the same flow rate. The following points can be given as reasons. Downward-flowing impinging jet velocity is larger than that of upward-flowing jet at the same flow rate due to gravity direction. Heat transfer is affected by a geometric arrangement relation of radial spreading liquid film, vapor and hot plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Takuo, I.: Production and technology of iron and steel in Japan during 1998. ISIJ Int. 39(6), 509–523 (1999)

    Article  Google Scholar 

  2. Wolf, D.H., Incropera, F.P., Viskanta, R.: Jet impingement boiling. Adv. Heat Transf. 23, 1–132 (1993)

    Article  Google Scholar 

  3. Monde, M.: Heat transfer characteristics during quench of high temperature solid. J. Therm. Sci. Technol. 3(2), 292–308 (2008)

    Article  Google Scholar 

  4. Tong, A.Y.: A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a substrate. Numer. Heat Transf. Part A 44, 1–19 (2003)

    Article  Google Scholar 

  5. Shakouchi, T., Kito, M., Tsuda, M., Tsujimoto, K., Ando, T.: Flow and heat transfer of impinging jet from notched-orifice nozzle. J. Fluid Sci. Technol. 6 (4), 453–464 (2011)

    Article  Google Scholar 

  6. Fujibayashi, A., Kumagai, S., Takeyama, T.: Subcooled boiling heat transfer in four types of boiling systems by combining flow pattern and surface orientation. Trans. JSME 51(463 B), 919–927 (1985)

    Article  Google Scholar 

  7. Fujimoto, H., Suzuki, Y., Hama, T., Takuda, H.: Flow characteristics of circular liquid jet impinging on a moving surface covered with a water film. ISIJ Int. 51(9), 1497–1505 (2011)

    Article  Google Scholar 

  8. Morisawa, K., Nakahara, J., Nagata, K., Fujimoto, H., Hama, T., Takuda, H.: Boiling heat transfer characteristics of vertical water jet impinging on horizontally moving hot plate. ISIJ Int. 58(1), 140–145 (2018)

    Article  Google Scholar 

  9. Nakagawa, S., Tachibana, H., Kadoya, Y., Haraguchi, Y., Kobayashi, K., Nakamura, O., Kojima, J., Isobe, G., Yazawa, T.: Cooling control technology of steel plate in on-line accelerated cooling process. Trans. SICE 50(6), 487–496 (2014)

    Article  Google Scholar 

  10. Arimoto, K., Ikuta, F., Horino, T., Tamura, S., Narazaki, M., Mikita, Y.: Preliminary study to identify criterion for quench crack prevention by computer simulation. In: 14th Congress of International Federation for Heat Treatment and Surface Engineering. Shanghai (2004)

  11. Yamagami, S., Nishio, S.: The effect of surface orientation on radial spreading flow. Trans. JSME 72(719 B), 1682–1687 (2006)

    Article  Google Scholar 

  12. Yamagami, S., Nishio, S., et al.: Numerical simulation of liquid jet and mist flow with phase change. In: International Symposium on Computational Challenges in Thermal Fluids and Energy Systems. 3.1-3.2, Tokyo (2007)

  13. Woodfield, P.L., Monde, M., Mitsutake, Y.: Improved analytical solution for inverse heat conduction problems on thermally thick and semi-infinite solids. Int. J. Heat Mass Transf. 49, 2864–2876 (2006)

    Article  MATH  Google Scholar 

  14. Liu, X, J. H. Lienhard V.: Liquid jet impingement heat transfer on a uniform flux surface. In: National Heat Transfer Conference HTD-106, pp 523–530 (1989)

  15. Bohr, T., Ellegaard, C., Hansen, A.E., Haaning, A.: Hydraulic jumps, flow separation and wave breaking: an experimental study. Physica B 228, 1–10 (2003)

    Article  Google Scholar 

  16. Bohr, T., Dimon, P., Putkaradze, V.: Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635–648 (1993)

    Article  MATH  Google Scholar 

  17. Rao, A., Arakeri, J.H.: Wave structure in the radial film flow with a circular hydraulic jump. Exp. Fluids 31, 542–549 (2001)

    Article  Google Scholar 

  18. Bréchet, Y., Néda, Z: On the circular hydraulic jump. Am. J. Phys. 67(8), 723–731 (1999)

    Article  Google Scholar 

  19. Woodfield, P.L., Monde, M., Mozumder, A.K.: Observations of high temperature impinging-jet boiling phenomena. Int. J. Heat Mass Transf. 48, 2032–2041 (2005)

    Article  Google Scholar 

  20. Hatta, N., Kokado, J., Hanasaki, K., Takuda, H., Nakazawa, M.: Effect of water flow rate on cooling capacity of laminar flow for hot steel plate. Tetsu-to-Hagane 68(8), 974–981 (1982)

    Article  Google Scholar 

  21. CTI Reviews, Applied Calculus, Hybrid: Mathematics, Calculus, Cram101 Textbook Reviews (2016)

  22. Ito, T., Takata, Y., Liu, Z.-H.: Studies on the water cooling of hot surfaces. Trans. JSME 55(511 B), 805–813 (1989)

    Article  Google Scholar 

  23. Nishio, S., Kim, Y.-C.: Heat transfer of dilute spray impinging on hot surface (simple model focusing on rebound motion and sensible heat of droplets). Int. J. Heat Mass Transf. 41, 4113–4119 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research owes much to the thoughtful and helpful comments of Professor Emeritus Shoji, M. and Professor Emeritus, former Executive Director Nishio, S. The author would also like to thank the invaluable inputs from the reviewers. Their comments and suggestions have considerably improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigemasa Yamagami.

Ethics declarations

Conflict of interest

The author declare that he have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagami, S. Surface Orientation Effect on Local Heat Transfer by Round Water Jet Impingement. Flow Turbulence Combust 102, 485–496 (2019). https://doi.org/10.1007/s10494-018-9976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9976-5

Keywords

Navigation