Skip to main content
Log in

Evaluation of Droplet Evaporation Models and the Incorporation of Natural Convection Effects

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Evaporation of fuel droplets in high temperature gas environment is of great importance in many engineering applications. There are already several theoretical models proposed in the literature to represent this phenomenon by considering mass and energy transfer between the droplet and the surrounding gas. For that reason, this work aims to evaluate droplet evaporation models that are usually used in spray combustion calculations, including equilibrium and non-equilibrium formulations. In order to validate and assess these theoretical models predictions, an in-house code was developed and diameter evolution results from the numerical simulations are compared against experimental data. First, the models performance are evaluated for water in a case of low evaporation rate and; then, they are evaluated for n-heptane moderate and high evaporation rates using recent experimental data acquired with a new technique. Furthermore, the incorporation of natural convection effects on the droplet evaporation rate by using an empirical correlation is investigated. The Abramzon-Sirignano model is the only one which does not overestimate the evaporation rate for any ambient conditions tested when compared with experimental rate. The results also reveal that when a correction factor for energy transfer reduction due to evaporation is incorporated in the classical evaporation model, the predictions from this model and the non-equilibrium one cannot be differentiated, even if the initial droplet diameter is small. Additionally, taking natural convection effects into account by adding the Grashof number into the Ranz-Marshall correlation for Nusselt and Sherwood calculations actually overestimates the evaporation rate for droplet evaporation under atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Godsave, G.: Studies of the combustion of drops in a fuel spray–*the burning of single drops of fuel. Symp. (Int.) Combust. 4(1), 818–830 (1953). Fourth Symposium (International) on Combustion

    Article  Google Scholar 

  2. Jenny, P., Roekaerts, D., Beishuizen, N.: Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38(6), 846–887 (2012)

    Article  Google Scholar 

  3. Lefebvre, A.H., McDonell, V.G.: Atomization and Sprays. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  4. Liu, H.: Science and Engineering of Droplets: Fundamentals and Applications. William Andrew, Norwich (1999)

    Google Scholar 

  5. Faeth, G.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9(1), 1–76 (1983)

    Article  Google Scholar 

  6. Sirignano, W.A.: Fluid dynamics of sprays - 1992 Freeman scholar lecture. J. Fluids Eng. 115(3), 345–378 (1983)

    Article  Google Scholar 

  7. Chen, Y.C., Stårner, S.H., Masri, A.R.: A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone. Int. J. Multiphase Flow 32 (4), 389–412 (2006)

    Article  MATH  Google Scholar 

  8. Li, T., Nishida, K., Hiroyasu, H.: Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel 90(7), 2367–2376 (2011)

    Article  Google Scholar 

  9. Sommerfeld, M., Qiu, H.H.: Experimental studies of spray evaporation in turbulent flow. Int. J. Heat Fluid Flow 19(1), 10–22 (1998)

    Article  Google Scholar 

  10. Abdelsamie, A., Thévenin, D.: Direct numerical simulation of spray evaporation and autoignition in a temporally-evolving jet. Proc. Combust. Inst. 36(2), 2493–2502 (2017)

    Article  Google Scholar 

  11. Azami, M.H., Savill, M.: Modelling of spray evaporation and penetration for alternative fuels. Fuel 180(Supplement C), 514–520 (2016)

    Article  Google Scholar 

  12. De, S., Lakshmisha, K., Bilger, R.W.: Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust. Flame 158(10), 1992–2008 (2011)

    Article  Google Scholar 

  13. Jones, W., Lyra, S., Marquis, A.: Large eddy simulation of evaporating kerosene and acetone sprays. Int. J. Heat Mass Transf. 53(11), 2491–2505 (2010)

    Article  MATH  Google Scholar 

  14. Sadiki, A., Chrigui, M., Janicka, J., Maneshkarimi, M.R.: Modeling and simulation of effects of turbulence on vaporization, mixing and combustion of liquid-fuel sprays. Flow Turbul. Combust. 75(1), 105–130 (2005)

    Article  MATH  Google Scholar 

  15. Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  16. Sazhin, S.S.: Droplets and Sprays, vol. 63. Springer, Berlin (2014)

    Book  Google Scholar 

  17. Sazhin, S.S.: Modelling of fuel droplet heating and evaporation: recent results and unsolved problems. Fuel 196(Supplement C), 69–101 (2017)

    Article  Google Scholar 

  18. Borodulin, V., Letushko, V., Nizovtsev, M., Sterlyagov, A.: Determination of parameters of heat and mass transfer in evaporating drops. Int. J. Heat Mass Transf. 109(Supplement C), 609–618 (2017)

    Article  Google Scholar 

  19. Chauveau, C., Halter, F., Lalonde, A., Gökalp, I.: An experimental study on the droplet vaporization: effects of heat conduction through the support fiber. In: Proceedings of 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe 2008), vol. 59, p 61 (2008)

  20. Ghassemi, H., Baek, S.W., Khan, Q.S.: Experimental study on binary droplet evaporation at elevated pressures and temperatures. Combust. Sci. Technol. 178(6), 1031–1053 (2006)

    Article  Google Scholar 

  21. Han, K., Yang, B., Zhao, C., Fu, G., Ma, X., Song, G.: Experimental study on evaporation characteristics of ethanol–diesel blend fuel droplet. Exp. Thermal Fluid Sci. 70(Supplement C), 381–388 (2016)

    Article  Google Scholar 

  22. Hashimoto, N., Nomura, H., Suzuki, M., Matsumoto, T., Nishida, H., Ozawa, Y.: Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures. Fuel 143(Supplement C), 202–210 (2015)

    Article  Google Scholar 

  23. Nomura, H., Ujiie, Y., Rath, H.J., Sato, J., Kono, M.: Experimental study on high-pressure droplet evaporation using microgravity conditions. Symp. (Int.) Combust. 26(1), 1267–1273 (1996)

    Article  Google Scholar 

  24. Wong, S.C., Lin, A.C.: Internal temperature distributions of droplets vaporizing in high-temperature convective flows. J. Fluid Mech. 237, 671–687 (1992)

    Article  Google Scholar 

  25. Miller, R., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiphase Flow 24(6), 1025–1055 (1998)

    Article  MATH  Google Scholar 

  26. Yang, J.R., Wong, S.C.: On the discrepancies between theoretical and experimental results for microgravity droplet evaporation. Int. J. Heat Mass Transf. 44(23), 4433–4443 (2001)

    Article  MATH  Google Scholar 

  27. Ghata, N., Shaw, B.D.: Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity. Int. J. Heat Mass Transf. 77(Supplement C), 22–36 (2014)

    Article  Google Scholar 

  28. Verwey, C., Birouk, M.: Experimental investigation of the effect of droplet size on the vaporization process in ambient turbulence. Combust. Flame 182(Supplement C), 288–297 (2017)

    Article  Google Scholar 

  29. Nomura, H., Kono, M., Sato, J., Marks, G., Iglseder, H., Rath, H.J.: Effects of the natural convection on fuel droplet evaporation. In: Rath, H.J. (ed.) Microgravity Fluid Mechanics, pp 245–252. Springer, Berlin (1992)

  30. Verwey, C., Birouk, M.: Experimental investigation of the effect of natural convection on the evaporation characteristics of small fuel droplets at moderately elevated temperature and pressure. Int. J. Heat Mass Transf. 118, 1046–1055 (2018)

    Article  Google Scholar 

  31. Kitano, T., Nishio, J., Kurose, R., Komori, S.: Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation. Combust. Flame 161 (2), 551–564 (2014)

    Article  Google Scholar 

  32. Spalding, D.B.: The combustion of liquid fuels. In: Symposium (international) on combustion, vol. 4, pp 847–864. Elsevier (1953)

  33. El Wakil, M., Uyehara, O., Myers, P.: A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air. Tech. Rep. 3179, NACA (1954)

  34. Abramzon, B., Sirignano, W.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989)

    Article  Google Scholar 

  35. Abramzon, B., Sazhin, S.: Convective vaporization of a fuel droplet with thermal radiation absorption. Fuel 85(1), 32–46 (2006)

    Article  Google Scholar 

  36. Maxwell, J.C.: Diffusion, 9th edn., vol. 7, pp. 214–221. Encyclopedia Britannica (1877)

  37. Fuchs, N.A.: Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, London (1959)

    Google Scholar 

  38. Stefan, J.: Über die verdampfung aus einem kreisförmig oder elliptisch begrenzten becken. Wien Ber 83, 943–954 (1881)

    MATH  Google Scholar 

  39. Davis, E.J., Schweiger, G.: The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena. Springer Science & Business Media (2012)

  40. Ranz, W., Marshall, W.: Evaporation from drops: Part I. Chem. Eng. Prog. 48(3), 141–146 (1952)

    Google Scholar 

  41. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2007)

    Google Scholar 

  42. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2016)

    MATH  Google Scholar 

  43. Bellan, J., Summerfield, M.: Theoretical examination of assumptions commonly used for the gas phase surrounding a burning droplet. Combust. Flame 33(Supplement C), 107–122 (1978)

    Article  Google Scholar 

  44. Sadiki, A., Chrigui, M., Dreizler, A.: Thermodynamically consistent modelling of gas turbine combustion sprays. In: Flow and Combustion in Advanced Gas Turbine Combustors, pp 55–90. Springer, Berlin (2013)

  45. Hubbard, G., Denny, V., Mills, A.: Droplet evaporation: effects of transients and variable properties. Int. J. Heat Mass Transf. 18(9), 1003–1008 (1975)

    Article  Google Scholar 

  46. Yuen, M.C., Chen, L.W.: On drag of evaporating liquid droplets. Combust. Sci. Technol. 14(4–6), 147–154 (1976)

    Article  Google Scholar 

  47. Ma, L., Naud, B., Roekaerts, D.: Transported pdf modeling of ethanol spray in hot-diluted coflow flame. Flow Turbul. Combust. 96(2), 469–502 (2016)

    Article  Google Scholar 

  48. Denner, F., van der Heul, D.R., Oud, G.T., Villar, M.M., da Silveira Neto, A., van Wachem, B.G.: Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension. Int. J. Multiphase Flow 61(Supplement C), 37–47 (2014)

    Article  MathSciNet  Google Scholar 

  49. de Jesus, W.C., Roma, A.M., Pivello, M.R., Villar, M.M., da Silveira-Neto, A.: A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant. J. Comput. Phys. 281(Supplement C), 403–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pivello, M., Villar, M., Serfaty, R., Roma, A., Silveira-Neto, A.: A fully adaptive front tracking method for the simulation of two phase flows. Int. J. Multiphase Flow 58(Supplement C), 72–82 (2014)

    Article  MathSciNet  Google Scholar 

  51. Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org. Version 2.2.1 (2016)

  52. Cai, L., Pitsch, H., Mohamed, S.Y., Raman, V., Bugler, J., Curran, H., Sarathy, S.M.: Optimized reaction mechanism rate rules for ignition of normal alkanes. Combust. Flame 173, 468–482 (2016)

    Article  Google Scholar 

  53. Green, D., Perry, R.: Perry’s chemical engineers’ handbook. McGraw-Hill Professional, 8th edn. Chemical Engineers Handbook (2007)

  54. Ranz, W., Marshall, W.: Evaporation from drops: Part II. Chem. Eng. Prog. 48(3), 173–180 (1952)

    Google Scholar 

  55. Filho, F.L.S.: Novel approach toward the consistent simulation of turbulent spray flames using tabulated chemistry. Ph.D. thesis, TU Darmstadt, Aachen (2017)

  56. Sierra Sànchez, P.: Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers. Ph.D. thesis, Toulouse, INPT (2012)

  57. Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012). Special Issue on Turbulent Combustion

    Article  Google Scholar 

  58. Yuge, T.: Experiments on heat transfer from spheres including combined natural and forced convection. J. Heat Transf. 82(3), 214–220 (1960)

    Article  Google Scholar 

  59. Ebrahimian, V., Nicolle, A., Habchi, C.: Detailed modeling of the evaporation and thermal decomposition of urea-water solution in SCR systems. AIChE J. 58(7), 1998–2009 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial and technical support from Petróleo Brasileiro S.A. (Petrobras), National Counsel of Technological and Scientific Development (CNPq), Minas Gerais State Agency for Research and Development (FAPEMIG) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abgail P. Pinheiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, A.P., Vedovoto, J.M. Evaluation of Droplet Evaporation Models and the Incorporation of Natural Convection Effects. Flow Turbulence Combust 102, 537–558 (2019). https://doi.org/10.1007/s10494-018-9973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9973-8

Keywords

Navigation