Skip to main content
Log in

An Enhanced Version of Delayed Detached-Eddy Simulation Based on the \(\overline {v^{2}}-f\) Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

To overcome the scale discontinuity of the Delayed Detached-eddy simulation (DDES) based on the \(\overline {v^{2}}-f\) Reynolds-averaged Navier-Stokes (RANS) model developed by Jee and Shariff (International Journal of Heat and Fluid Flow 46(2014) 84), an improvement is proposed in the present work. For the new DDES formulation, the scale discontinuity is avoided in the transition region and the RANS mode is correctly recovered for the shielded region. However, the numerical stability of the new DDES formulation is poor, and the relaxation factor in some locations is extremely large. To improve the numerical stability, the underlying \(\overline {v^{2}}-f\) RANS model is modified. Besides, a damping function is introduced to damp the RANS region when the grid resolution is fine enough and the flow is filled with an abundance of turbulence. Numerical simulations are carried out for some typical wall-bounded flows and special attention is paid to distinguish the effect of the damping function to the resolution capability of the flowfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feas1ibility of les for wings, and on a hybrid rans/les approach. In: Proceedings of First AFOSR International Conference on DNS/LES. Greyden Press, Ruston, Louisiana (1997)

  2. Quéméré, P., Sagaut, P.: Zonal multi-domain rans/les simulations of turbulent flows. Int. J. Numer. Methods Fluids 40, 903–925 (2002)

    Article  MATH  Google Scholar 

  3. Menter, F.R., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: McCallen, R., Browand, F., Ross, J. (eds.) Symposium on “The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains”. Springer, Berlin (2004)

  4. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  5. Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of ddes and iddes formulations for the k-w shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)

    Article  MATH  Google Scholar 

  6. Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

    Article  MATH  Google Scholar 

  7. Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R.: The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)

    Article  Google Scholar 

  8. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An enhanced version of des with rapid transition from rans to les in separated flows. Flow Turbul. Combust 95, 709–737 (2015)

    Article  Google Scholar 

  9. Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate rans to les transition of free shear layers in des. Notes Numer. Fluid Mech. Multidiscip. Des. 130, 187–202 (2015)

    Article  Google Scholar 

  10. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid rans-les approach with delayed-des and wall-modelled les capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  11. Reddy, K.R., Ryon, J.A., Durbin, P.A.: A ddes model with a smagorinsky-type eddy viscosity formulation and log-layer mismatch correction. Int. J. Heat Fluid Flow 50, 103–113 (2014)

    Article  Google Scholar 

  12. Yin, Z., Reddy, K.R., Durbin, P.A.: On the dynamic computation of the model constant in delayed detached eddy simulation. Phys. Fluids 27, 4–18 (2015)

    Article  Google Scholar 

  13. He, C., Liu, Y., Yavuzkurt, S.: A dynamic delayed detached-eddy simulation model for turbulent flows. Comput. Fluids 146, 174–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, W.W., Menon, S.: A new dynamic one-equation subgrid-scale model for large eddy simulations. AlAA 95-0356. AIAA (1995)

  15. Durbin, P.A.: Near-wall turbulence closure modeling without damping functions. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)

    MATH  Google Scholar 

  16. Durbin, P.A.: A reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)

    Article  Google Scholar 

  17. Durbin, P.A.: Separated flow computations with the k-e-v2 model. AIAA J. 33, 659–664 (1995)

    Article  Google Scholar 

  18. Jee, S., Shariff, K.: Detached-eddy simulation based on the v2-f model. Int. J. Heat Fluid Flow 46, 84–101 (2014)

    Article  Google Scholar 

  19. D’Alessandro, V., Montelpare, S., Ricci, R.: Detached-eddy simulations of the flow over a cylinder at re = 3900 using openfoam. Comput. Fluids 136, 152–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Issa, R.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lien, F.S., Kalitzin, G., Durbin, P.A.: Rans modelling for compressible and transitional flows. In: Proceedings of the 1998 Summer Program, Center for Turbulence Research. Stanford University (1998)

  22. Chien, K.: Predictions of channel and boundary layer flows with a low-reynolds-number turbulence model. AIAA J. 20, 33–38 (1982)

    Article  MATH  Google Scholar 

  23. Davidson, L., Nielsen, P.V., Sveningsson, A.: Modifications of the v2 model for computing the flow in a 3d wall jet. In: Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. Antalya (2003)

  24. Sveningsson, A., Davidson, L.: Assessment of realizability constraints and boundary conditions in v2-f turbulence models. Turbul. Heat Mass Transf. 4, 585–592 (2003)

    Google Scholar 

  25. Kalitzin, G.: Numerical issues and freestream behavior of the v2-f model. Tech. rep., Center for Turbulence Research Annual Research Briefs, Stanford University (2004)

  26. Tartinville, B., Lorrain, E., Hirsch, C.: Application of the v2-f turbulence model to turbomachinery configurations. GT2007-27708. Montreal, Canada (2007)

  27. Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of fulland narrow-band velocity signals in grid-generated, isotropic’ turbulence. J. Fluid Mech. 48, 273–337 (1971)

    Article  Google Scholar 

  28. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to ret = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  29. Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to R e τ = 5200. J. Fluid Mech. 774, 395–415 (2015)

    Article  Google Scholar 

  30. Mirzaei, M., Davidson, L., Sohankar, A., Innings, F.: The effect of corrugation on heat transfer and pressure drop in channel flow with different prandtl numbers. Int. J. Heat Mass Transf. 66, 164–176 (2013)

    Article  Google Scholar 

  31. Mirzaei, M., Sohankar, A., Davidson, L., Innings, F.: Large eddy simulation of the flow and heat transfer in a half-corrugated channel with various wave amplitudes. Int. J. Heat Mass Transf. 76, 432–446 (2014)

    Article  Google Scholar 

  32. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  33. ERCOFTAC: (xxxx). http://cfd.mace.manchester.ac.uk/ercoftac/

  34. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills—numerical and experimental study in a wide range of reynolds numbers. Comput. Fluids 38, 433–457 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Research Foundation of National University of Defense Technology (No. ZDYYJCYJ20140101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidao Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Deng, X. & Wang, G. An Enhanced Version of Delayed Detached-Eddy Simulation Based on the \(\overline {v^{2}}-f\) Model. Flow Turbulence Combust 102, 167–188 (2019). https://doi.org/10.1007/s10494-018-9957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9957-8

Keywords

Navigation