Skip to main content
Log in

DNS of Turbulent Flows in Ducts with Complex Shape

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We carry out Direct Numerical Simulation (DNS) of flows in closed straight ducts with complex peripheral shape. To perform the simulations the Navier-Stokes equations in cylindrical coordinates are discretized by a second-order finite difference scheme, and the immersed-boundary technique is used to resolve the flow close to walls of complex shape. The basic geometry is a circular pipe of radius R, with imposed sinusoidal perturbations of the type \(\eta R \sin (N_{w}\theta )\). Simulations by varying N w at fixed η were performed to investigate the effect of the perturbation wavenumber. Additional simulations by fixing N w and varying η also allow to investigate the influence of the amplitude of the wall corrugations. The modifications of the near-wall structures due to change in the shape of the walls are well depicted through contour plots of the radial component of the vorticity. The presence of geometrical disturbances anchors the structures at the locations where curvature changes, and the shape of the structures is strongly linked to the amplitude of the wall corrugation. Our interest is also in understanding the influence of the shape of the surface on wall friction. We were expecting some changes in the profile of the total stress with respect to that of the circular pipe, which instead were not found. This is a first indication that changes in the near-wall region do not affect the outer region, and that Townsend’s similarity hypothesis holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Darcy, H.: Au mouvement de l’eau dans les tuyaux. Recherches experimentales pp. 1–268 (1857)

  2. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. 186, 123–164 (1895)

    Article  MATH  Google Scholar 

  3. Prandtl, L.: Turbulent flow. NACA TM 453, 1–23 (1927)

    Google Scholar 

  4. Nikuradse, J.: Turbulente strömung in nicht-kreisförmigen rohren. Ing. Arch. 1, 306–332 (1930)

    Article  MATH  Google Scholar 

  5. Schlichting, H.: Boundary-Layer Theory. Mc-Graw-Hill, New York (1968)

    MATH  Google Scholar 

  6. Schiller, L.: Uber den stromungswidersfand von rohren verschiedenen querschnitts und rauhigkeifsgrades. Zeitschrift fur angewandte Matbematik und Mechanik pp. 1–12 (1922)

  7. Bradshaw, P.: Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 57–74 (1987)

    Article  Google Scholar 

  8. Marin, O., Vinuesa, R., Obabko, A.V., Schlatter, P.: Characterization of the secondary flow in hexagonal ducts. Phys. Fluids 28(12), 125101 (2016)

    Article  Google Scholar 

  9. Vidal, A., Vinuesa, R., Schlatter, P., Nagib, H.M.: Influence of corner geometry on the secondary flow in turbulent square ducts. Int. J. Heat Fluid Flow 67, 69–78 (2017)

    Article  Google Scholar 

  10. Lammers, P., Jovanovic, J., Frohnapfel, B., Delgado, A.: Erlangen pipe flow: the concept and dns results for microflow control of near-wall turbulence. Microfluid Nanofluid 13, 429–440 (2012)

    Article  Google Scholar 

  11. Daschiel, G., Krieger, V., Jovanovic, J., Delgado, A.: Numerical simulation of turbulent flow through schiller’s wavy pipe. J. Fluid Mech. 761, 241–260 (2014)

    Article  Google Scholar 

  12. Smits, A.J., McKeon, B.J., Marusic, I.: High-reynolds number wall turbulence. Ann. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  13. Bernardini, M., Pirozzoli, S., Orlandi, P.: Velocity statistics in turbulent channel flow up to Re τ = 4000. J. Fluid Mech. 742, 171–191 (2014)

    Article  Google Scholar 

  14. Hoyas, S., Jiménez, J.: Scaling of velocity fluctuations in turbulent channels up to R e τ = 2003. Phys. Fluids 18, 011702 (2006)

    Article  Google Scholar 

  15. Walsh, M., Weinstein, L.M.: Drag and heat transfer on surfaces with small longitudinal fins. AIAA Paper pp. 78–1161 (1978)

  16. Choi, H., Moin, P.J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–538 (1993)

    Article  MATH  Google Scholar 

  17. Orlandi, P., Leonardi, S., Antonia, R.A.: Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279–305 (2006)

    Article  MATH  Google Scholar 

  18. Verzicco, R., Orlandi, P.: A finite-difference scheme for the three-dimensional incompressible flows in cylindrical coordinates. J. Comp. Phys. 123, 402–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fadlun, A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Orlandi, P., Leonardi, S.: DNS Of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7(53), 1468–5248 (2006)

    Google Scholar 

  21. Burattini, P., Leonardi, S., Orlandi, P., Antonia, R.A.: Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J. Fluid Mech. 600, 403–426 (2008)

    Article  MATH  Google Scholar 

  22. Uhlmann, M., Pinelli, A., Kawahara, G., Sekimoto, A.: Marginally turbulent flow in a square duct. J. Fluid Mech. 588, 153–162 (2007)

    Article  MATH  Google Scholar 

  23. White, F.M.: Viscous Fluid Flow. Mc-Graw-Hill, New York (2006)

    Google Scholar 

  24. Duan, S., Yovanovich, M.M., Muzychka, Y.S.: Pressure drop for fully developed turbulent flow in circular and noncircular ducts. J. Fluids Eng. 134(6), 061201 (2012)

    Article  Google Scholar 

  25. Orlandi, P.: Time evolving simulations as a tentative reproduction of the reynolds experiments on flow transition in circular pipes. Phys. Fluids 20, 101516 (2008)

    Article  MATH  Google Scholar 

  26. Orlandi, P.: The importance of wall-normal reynolds stress in turbulent rough channel flows. Phys. Fluids 25, 110813 (2013)

    Article  Google Scholar 

  27. Orlandi, P., Bernardini, M., Pirozzoli, S.: Poiseuille and Couette flows in the transitional and fully turbulent regime. J. Fluid Mech. 770, 424–441 (2015)

    Article  Google Scholar 

  28. Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Influence of corner geometry on the secondary flow in turbulent square ducts. Meccanica 51, 3025–3042 (2016)

    Article  MathSciNet  Google Scholar 

  29. Pirozzoli, S., Modesti, D., Orlandi, P., Grasso, F.: Turbulence and secondary motions in square duct flow. J. Fluid Mech 840, 631–655 (2018)

    Article  Google Scholar 

  30. Orlandi, P., Leonardi, S.: Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics. J. Fluid Mech. 606, 399–415 (2008)

    Article  MATH  Google Scholar 

  31. Townsend, A.: The structure of Turbulent Shear Flows. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge that some of the results reported in this paper have been achieved using the PRACE Research Infrastructure resource MARCONI based at CINECA, Casalecchio di Reno, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Orlandi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlandi, P., Modesti, D. & Pirozzoli, S. DNS of Turbulent Flows in Ducts with Complex Shape. Flow Turbulence Combust 100, 1063–1079 (2018). https://doi.org/10.1007/s10494-018-9911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9911-9

Keywords

Navigation