Flow, Turbulence and Combustion

, Volume 101, Issue 2, pp 413–432 | Cite as

A Band-Width Filtered Forcing Based Generation of Turbulent Inflow Data for Direct Numerical or Large Eddy Simulations and its Application to Primary Breakup of Liquid Jets

  • Sebastian KetterlEmail author
  • Markus Klein


Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of spatially inhomogeneous flows strongly depend on turbulent inflow boundary conditions. Realistic coherent structures need to be prescribed to avoid the immediate damping of random velocity fluctuations. A new turbulent inflow data generation method based on an auxiliary simulation of forced turbulence in a box is presented. The new methodology combines the flexibility of the synthetic turbulence generation with the accuracy of precursor simulation methods. In contrast to most auxiliary simulations, the new approach provides full control over the turbulence properties and computational costs remain reasonable. The lack of physical information and artificiality attested with pseudo-turbulence methods is overcome since the inflow data stems from a solution of the Navier-Stokes equations. The generated velocity fluctuations are by construction divergence-free and exhibit the non-Gaussian characteristics of turbulence. The generated inflow data is applied to the simulation of multiphase primary breakup.


Turbulent inflow Band-width filtered turbulence forcing Large eddy simulation Direct numerical simulation 



Support by the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG, GS: KL1456/1-1) is gratefully acknowledged. Computer resources for this project have been provided by the Gauss Center for Supercomputing/Leibniz Supercomputing Center under grant: pr48no. The authors are grateful to the developers of the PARIS-Simulator for providing the source code.


This study was funded by Deutsche Forschungsgemeinschaft (DFG) - GS: KL1456/1-1

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Schmidt, S., Breuer, M.: Source term based synthetic turbulence inflow generator for eddy-resolving predictions of an airfoil flow including a laminar separation bubble. Comput. Fluids 146, 1–22 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    di Mare, L., Klein, M., Jones, W., Janicka, J.: Synthetic turbulence inflow conditions for large eddy simulation. Phys. Fluids 18(025), 107 (2006)Google Scholar
  3. 3.
    Tabor, G., Baba-Ahmadi, M.: Inlet conditions for large eddy simulation: A review. Comput. Fluids 39(4), 553–567 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wu, X.: Inflow turbulence generation methods. Annu. Rev. Fluid Mech. 49, 23–49 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tirunagari, R.R., Pettit, M.W., Kempf, A.M., Pope, S.B.: A simple approach for specifying velocity inflow boundary conditions in simulations of turbulent opposed-jet flows. Flow Turbul. Combust. 98(1), 131–153 (2017)CrossRefGoogle Scholar
  7. 7.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large-eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)CrossRefGoogle Scholar
  8. 8.
    Kondo, K., Murakami, S., Mochida, A.: Generation of velocity fluctuations for inflow boundary condition of LES. J. Wind Eng. Ind. Aerodyn. 67, 51–64 (1997)CrossRefGoogle Scholar
  9. 9.
    Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)CrossRefGoogle Scholar
  10. 10.
    Lee, S., Lele, S.K., Moin, P.: Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow. Phys. Fluids A: Fluid Dynamics (1989-1993) 4(7), 1521–1530 (1992)CrossRefGoogle Scholar
  11. 11.
    Smirnov, A., Celik, I., Shi, S.: Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluids Eng. 123, 359–371 (2001)CrossRefGoogle Scholar
  12. 12.
    Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27(4), 585–593 (2006)CrossRefGoogle Scholar
  13. 13.
    Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74(1), 67–84 (2005)CrossRefGoogle Scholar
  14. 14.
    Fathali, M., Klein, M., Broeckhoven, T., Lacor, C., Baelmans, M.: Generation of turbulent inflow and initial conditions based on multi correlated random fields. Int. J. Numer. Methods Fluids 57, 93–117 (2008)CrossRefGoogle Scholar
  15. 15.
    Immer, M.: Time-resolved measurement and simulation of local scale turbulent urban flow. Ph.D. thesis, ETH Zürich (2016)Google Scholar
  16. 16.
    Xie, Z.T., Castro, I.P.: Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 81(3), 449–470 (2008)CrossRefGoogle Scholar
  17. 17.
    Kempf, A., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kim, Y., Castro, I.P., Xie, Z.T.: Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers. Comput. Fluids 84, 56–68 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kornev, N., Hassel, E.: Synthesis of homogeneous anisotropic divergence-free turbulent fields with prescribed second-order statistics by vortex dipoles. Phys. Fluids 19(6), 068,101 (2007)CrossRefGoogle Scholar
  20. 20.
    Lundgren, T.: Linearly forced isotropic turbulence. In: Annual Research Briefs (Center for Turbulence Research), pp. 461–473 (2003)Google Scholar
  21. 21.
    Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties. Phys. Fluids (1994-present) 17(9), 095,106 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Klein, M., Chakraborty, N., Ketterl, S.: A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust. 99, 955–971 (2017)CrossRefGoogle Scholar
  23. 23.
    Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  24. 24.
    Mansour, N., Wray, A.: Decay of isotropic turbulence at low Reynolds number. Phys. Fluids (1994-present) 6(2), 808–814 (1994)CrossRefGoogle Scholar
  25. 25.
    Trontin, P., Vincent, S., Estivalezes, J., Caltagirone, J.: Direct numerical simulation of a freely decaying turbulent interfacial flow. Int. J. Multiphase Flow 36 (11), 891–907 (2010)CrossRefGoogle Scholar
  26. 26.
    Mansour, N., Moser, R., Kim, J.: Fully developed turbulent channel flow simulations. AGARD Advisory Report 345, 119–121 (1998)Google Scholar
  27. 27.
    Overholt, M.R., Pope, S.B.: A deterministic forcing scheme for direct numerical simulations of turbulence. Comput. Fluids 27(1), 11–28 (1998)CrossRefGoogle Scholar
  28. 28.
    She, Z.S., Jackson, E., Orszag, S.A.: Scale-dependent intermittency and coherence in turbulence. J. Sci. Comput. 3(4), 407–434 (1988)CrossRefGoogle Scholar
  29. 29.
    Batchelor, G., Townsend, A.: The nature of turbulent motion at large wave-numbers. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 199, pp. 238–255. The Royal Society (1949)Google Scholar
  30. 30.
    Monin, A.S., Yaglom, A.M.: Statistical fluid mechanics, volume II: Mechanics of turbulence, vol. 2. Courier Corporation, North Chelmsford (2013)Google Scholar
  31. 31.
    Yamamoto, K., Kambe, T.: Gaussian and near-exponential probability distributions of turbulence obtained from a numerical simulation. Fluid Dyn. Res. 8 (1-4), 65–72 (1991)CrossRefGoogle Scholar
  32. 32.
    Smith, L., Reynolds, W.: On the Yakhot–Orszag renormalization group method for deriving turbulence statistics and models. Phys. Fluids A: Fluid Dyn. (1989-1993) 4(2), 364–390 (1992)MathSciNetCrossRefGoogle Scholar
  33. 33.
    She, Z.S.: Intermittent vortex structures in homogeneous isotropic. Nature 344, 15 (1990)CrossRefGoogle Scholar
  34. 34.
    Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press, Cambridge (1953)zbMATHGoogle Scholar
  35. 35.
    Ling, Y., Zaleski, S., Scardovelli, R.: Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int. J. Multiphase Flow 76, 122–143 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct numerical simulations of gas–liquid multiphase flows. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  37. 37.
    Klein, M., Sadiki, A., Janicka, J.: Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation. Int. J. Heat Fluid Flow 24 (6), 785–794 (2003)CrossRefGoogle Scholar
  38. 38.
    Sander, W., Weigand, B.: Direct numerical simulation and analysis of instability enhancing parameters in liquid sheets at moderate reynolds numbers. Phys. Fluids (1994-present) 20(5), 053,301 (2008)CrossRefGoogle Scholar
  39. 39.
    Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations