Advertisement

Flow, Turbulence and Combustion

, Volume 100, Issue 3, pp 721–768 | Cite as

Reynolds-Averaged, Scale-Adaptive and Large-Eddy Simulations of Premixed Bluff-Body Combustion Using the Eddy Dissipation Concept

Article

Abstract

A lean premixed propane/air bluff-body stabilized flame (Volvo test rig) is calculated using the Scale-Adaptive Simulation turbulence model (SAS) and Large-Eddy simulations (LES) as well as the conventional Reynolds-averaged approach (RAS). RAS and SAS are closed by the standard k-𝜖 and the k-ω Shear Stress Transport (SST) turbulence models, respectively. The conventional Smagorinsky and the k-equation sub-grid scales models are used for the LES closure. Effects of the sub-grid scalar flux modeling using the classical gradient hypothesis and Clark’s tensor diffusivity closures both for the inert and reactive LES flows are discussed. The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction. It assumes that molecular mixing and the subsequent combustion occur in the ’fine structures’ (smaller dissipative eddies, which are close to the Kolmogorov scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the ’fine structures’ are evaluated using different turbulence models (RAS, SAS and LES). The finite-rate chemical kinetics is taken into account by treating the ’fine structures’ as constant pressure and adiabatic homogeneous reactors, calculated as a system of ordinary-differential equations (ODEs) described by a Perfectly Stirred Reactor (PSR) concept. Several further enhancements to model the PSRs are proposed, including a new Livermore Solver (LSODA) for integrating stiff ODEs and a new correction to calculate the PSR time scales. All models have been implemented as a stand-alone application \(\text {edcPisoFoam}\) based on the OpenFOAM technology. Additionally, several RAS calculations were performed using the Turbulence Flame Speed Closure model in Ansys Fluent to assess effects of the heat losses by modeling the conjugate heat transfer between the bluff-body and the reactive flow. Effects of the turbulence Schmidt number on RAS results are discussed as well. Numerical results are compared with available experimental data. Reasonable consistency between experimental data and numerical results provided by RAS, SAS and LES is observed. In general, there is satisfactory agreement between present LES-EDC simulations, numerical results by other authors and measurements without any major modification to the EDC closure constants, which gives a quite reasonable indication on the adequacy and accuracy of the method and its further application for turbulent premixed combustion simulations.

Keywords

URANS Eddy dissipation concept Large eddy simulation LSODA Scale adaptive simulation Lean premixed bluff-body combustion Heat transfer Volvo test rig edcPisoFoam 

Notes

Acknowledgements

We are grateful to the Norwegian Meta center for Computational Science (NOTUR) for providing the uninterrupted HPC computational resources and useful technical support. Comments and recommendations for three anonymous and very skilled reviewers of the Journal have increased considerably the quality of the paper.

Funding Information

Except for the computer allowance acknowledged above, this study has not received any funding.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: Tensorial approach to computational continuum mechanics using object-oriented techniques. A. Comp. Phys. 12(6), 620–631 (1998)CrossRefGoogle Scholar
  2. 2.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids 80, 408–422 (2013)CrossRefMATHGoogle Scholar
  3. 3.
    Lilleberg, B., Christ, D., Ertesvåg, I.S., Rian, K.E., Kneer, R.: Numerical simulation with an extinction database for use with the Eddy Dissipation Concept for turbulent combustion. Flow Turbul. Combust. 91, 319–346 (2013)CrossRefGoogle Scholar
  4. 4.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Numerical simulation of non-premixed turbulent combustion using the eddy dissipation concept and comparing with the steady laminar flamelet model. Flow Turbul. Combust. 93, 577–605 (2014)CrossRefGoogle Scholar
  5. 5.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Numerical simulations of the sandia flame d using the eddy dissipation concept. Flow Turbul. Combust. 93, 665–687 (2014)CrossRefGoogle Scholar
  6. 6.
    Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc Combust. Inst. 27, 1087–1095 (1998)CrossRefGoogle Scholar
  7. 7.
    Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151(1-2), 46–60 (2007)CrossRefGoogle Scholar
  8. 8.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32(2), 1779–1786 (2009)CrossRefGoogle Scholar
  9. 9.
    Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)CrossRefGoogle Scholar
  10. 10.
    Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff-body stabilised nonpremixed flames. Combust. Flame 114, 119–148 (1998)CrossRefGoogle Scholar
  11. 11.
    Launder, B., Spalding, D.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)CrossRefMATHGoogle Scholar
  12. 12.
    Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)CrossRefGoogle Scholar
  13. 13.
    Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI-Mech. http://www.me.berkeley.edu/gri-mech/. Accessed February 2013 (2008)
  14. 14.
    Menter, F.R., Egorov, Y.: The Scale-Adaptive Simulation method for unsteady turbulent flow predictions. Part 1, Theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159, 213–235 (2000)CrossRefGoogle Scholar
  16. 16.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 2nd rev. ed. Springer-Verlag, Berlin (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Radhakrishnan, K., Hindmarsh, A.C.: Description and use of LSODE, the Livermore solver for ordinary differential equations, Lawrence Livermore national laboratory report, UCRL-ID-113855 (1993)Google Scholar
  18. 18.
    Sjunnesson, A., Olovsson, S., Sjöblom, B.: Validation rig – a tool for flame studies, VOLVO Aero AB S-461 81. Trollhättan, Sweden (1991)Google Scholar
  19. 19.
    Sjunnesson, A., Nelson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame, Laser Anemometry 3, ASME (1991)Google Scholar
  20. 20.
    Sjunnesson, A., Henriksson, P., Löfström, C.: CARS measurements and visualization of reacting flows in a bluff body stabilized flame. AIAA 92–3650 (1992)Google Scholar
  21. 21.
    Jones, W.P., Marquis, A.J., Wang, F.: Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method. Fuel 140, 514–525 (2015)CrossRefGoogle Scholar
  22. 22.
    Ma, T., Gao, Y., Kempf, A.M., Chakraborty, N.: Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion. Combust. Flame 161, 3134–3153 (2014)CrossRefGoogle Scholar
  23. 23.
    Manickam, B., Franke, J., Muppala, S.P.R., Dinkelacker, F.: Large-eddy simulation of triangular-stabilized lean premixed turbulent flames: quality and error assessment. Flow Turbul. Combust. 88, 563–596 (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Sabelnikov, V., Fureby, C.: LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame 160, 83–96 (2013)CrossRefGoogle Scholar
  25. 25.
    Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  26. 26.
    Magnussen, B.F., Hjertager, B.H: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)CrossRefGoogle Scholar
  27. 27.
    Magnussen, B.F.: Modeling of NOx and soot formation by the Eddy Dissipation Concept. Int.Flame Research Foundation, 1st topic Oriented Technical Meeting., 17-19. Holland, Amsterdam (1989)Google Scholar
  28. 28.
    Menter, F.R., Egorov, Y.: Formulation of the Scale-Adaptive Simulation (SAS) model during the DESIDER Project. In: Haase, W., Braza, M., Revell, A. (eds.) Notes on Num. Fluid Mech Multidisc Design, 103, Springer (2009)Google Scholar
  29. 29.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)CrossRefMATHGoogle Scholar
  30. 30.
    Menter, F., Esch, T.: Elements of industrial heat transfer prediction. In: 16th Brazilian Congress of Mechanical Engineering (COBEM) (2001)Google Scholar
  31. 31.
    Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbulence Heat and Mass Transfer 4, 625–632 (2003)Google Scholar
  32. 32.
    Yoshizawa, A.: Statistical theory for compressible shear flows, with the application to subgrid modelling. Phys. Fluids 29(2152), 1416–1429 (1986)Google Scholar
  33. 33.
    Smagorinsky, J.S.: General circulation experiments with primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  34. 34.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd ed. Springer, Berlin (2006)MATHGoogle Scholar
  35. 35.
    Magnussen, B.F.: The Eddy Dissipation Concept a bridge between science and technology. In: ECCOMAS Thermal Conference on Computational Combustion, Lisbon (2005)Google Scholar
  36. 36.
    Butz, D., Gao, Y., Kempf, A.M., Chakraborty, N.: Large eddy simulation of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162, 3180–3196 (2015)CrossRefGoogle Scholar
  37. 37.
    Westbrook, C.K., Dryer, F.L.: Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27, 31–43 (1981)CrossRefGoogle Scholar
  38. 38.
    Westbrook, C.K., Dryer, F.L.: Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci. 10, 1–57 (1984)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14, 993–1025 (1995)Google Scholar
  41. 41.
    Karpov, V.P., Lipatnikov, A.N., Zimont, V.L.: A test of an engineering model of premixed turbulent combustion. Proc. Combust. Inst. 26, 249–257 (1996)CrossRefGoogle Scholar
  42. 42.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th ed. Springer, Berlin (2006)MATHGoogle Scholar
  43. 43.
    ANSYS FLUENT R13. Theory guide. Tech. rep., Ansys Inc (2013)Google Scholar
  44. 44.
    Cheng, P.: Dynamics of a radiating gas with application to flow over a wavy wall. AIAA J. 4(2), 238–245 (1966)CrossRefGoogle Scholar
  45. 45.
    Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. ASME J. Heat Transfer 104(4), 602–608 (1982)CrossRefGoogle Scholar
  46. 46.
    Dunkle, R.V.: Geometric mean beam lengths for radiant heat transfer calculations. ASME J. Heat Transfer 86(1), 75–80 (1964)CrossRefGoogle Scholar
  47. 47.
    Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147–163 (1984)MATHGoogle Scholar
  48. 48.
    Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182–207 (2007)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Meth. Fluids 31, 431–449 (1999)CrossRefMATHGoogle Scholar
  52. 52.
    Geurts, B.: Elements of direct and large-eddy simulation. R.T.Edwards, Philadelphia (2004)Google Scholar
  53. 53.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–32 (1983)CrossRefMATHGoogle Scholar
  54. 54.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 89, 491–518 (2012)CrossRefGoogle Scholar
  55. 55.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number 2 × 104. Flow Turbul. Combust. 92, 673–698 (2014)CrossRefGoogle Scholar
  56. 56.
    Sanquer, S., Bruel, P., Deshaies, B.: Some specific characteristics of turbulence in the reactive wakes of bluff bodies. AIAA J. 36(6), 994–1001 (1998)CrossRefGoogle Scholar
  57. 57.
    Hasse, C., Sohm, V., Wetzel, M., Durst, B.: Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder. Flow Turbul. Combust. 83, 1–20 (2009)CrossRefMATHGoogle Scholar
  58. 58.
    Shanbhogue, S.J., Husain, S., Lieuwen, T.: Lean blowoff of bluff body stabilized flames: scaling and dynamics, Prog. Energy Combust. Sci. 35, 98–120 (2009)Google Scholar
  59. 59.
    Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(6), 70–73 (1967)CrossRefGoogle Scholar
  60. 60.
    Cao, Y., Tamura, T.: Large-eddy simulations of flow past a square cylinder using structured and unstructured grids. Comput. Fluids 137, 36–54 (2016)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Yasari, E., Verma, S., Lipatnikov, A.N.: RANS simulations of statistically stationary premixed turbulent combustion using flame speed closure model. Flow Turbul. Combust. 94, 381–414 (2015)CrossRefGoogle Scholar
  62. 62.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)CrossRefMATHGoogle Scholar
  63. 63.
    Sathiah, P., Lipatnikov, A.: Effects of flame development on stationary premixed turbulent combustion. Proc. Comb. Inst. 31, 3115–3122 (2007)CrossRefGoogle Scholar
  64. 64.
    Baudoin, E., Bai, R.Yu., Nogenmyr, K.J., Bai, X.S., Fureby, C.: Comparison of LES models applied to a bluff body stabilized flame. AIAA 2009–1178 (2009)Google Scholar
  65. 65.
    Allauddin, U., Klein, M., Pfitzner, M., Chakraborty, N.: A priori and a posteriori analyses of algebraic flame surface density modeling in the context of Large Eddy Simulation of turbulent premixed combustion. Numer Heat Transfer, Part A: Appl. 71(2), 153–171 (2017)CrossRefGoogle Scholar
  66. 66.
    Klein, M., Chakraborty, N., Pfitzner, M.: Analysis of the combined modelling of sub-grid transport and filtered flame propagation for premixed turbulent combustion. Flow Turbul. Combust. 96, 921–938 (2016)CrossRefGoogle Scholar
  67. 67.
    Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)CrossRefMATHGoogle Scholar
  68. 68.
    O’Malley, R.E.: Singular perturbation methods for ordinary differential equations. Springer-Verlag, New York (1991)CrossRefMATHGoogle Scholar
  69. 69.
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite, SIAM. J. Sci. Comput. 18, 1–22 (1997)MathSciNetMATHGoogle Scholar
  70. 70.
    Robertson, H.H.: The Solution of a set of reaction rate equations. In: Walsh, J. (ed.) Numerical Analysis: an Introduction, pp. 178-182. Academic Press, London (1966)Google Scholar
  71. 71.
    Gobbert, M.K.: Robertson’s example for stiff differential equations. Arizona State University, Technical report (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.3DMSimtek ASSandnesNorway
  2. 2.Department of Energy and Process EngineeringNTNU Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations