Skip to main content
Log in

Dependence of Pressure, Combustion and Frequency Characteristics on Valved Pulsejet Combustor Geometries

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An experimental analysis of valved pulsejets based on the Curtis-Dyna design and the concomitant results are discussed in the current paper. By altering the combustor length, the tail pipe length and by adding a flare at the aft-end, twelve different pulsejet configurations are tested. An axially-distributed array of piezoelectric pressure sensors and ion probes reveal the pressure and combustion dynamics inside these devices. Evidence is attained to support the claim that valved Curtis-Dyna pulsejets of the tested configurations behave like a Helmholtz resonator. Each cycle of a pulsejet is composed of temporally and spatially restrained combustion events. Altering the geometry induces an amplitude modulated low frequency instability inside the pulsejet that is characterized by sinusoidally-varying peak cycle pressures. The operating frequency, peak pressures and combustion activity of the pulsejets are characterized to reveal that reliable pulsejet operation requires proper amount of coupling — defined by low time lags — between the pressure peaks and combustion events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30, 545–672 (2004)

    Article  Google Scholar 

  2. Putnam, A.A., Belles, F.E., Kentfield, J.A.C.: Pulse combustion. Prog. Energy Combust. Sci. 12, 43–79 (1986)

    Article  Google Scholar 

  3. Meng, X., De Jong, W., Kudra, T.: A state-of-the-art review of pulse combustion: principles, modeling, applications and R&D issues. Renew. Sustain. Energy Rev. 55, 73–114 (2016)

    Article  Google Scholar 

  4. Geng, T., Schoen, M.A., Kuznetsov, A.V., Roberts, W.L.: Combined numerical and experimental investigation of a 15-cm valveless pulsejet. Flow Turbul. Combust. 78, 17–33 (2007)

    Article  Google Scholar 

  5. Geng, T., Zheng, F., Kuznetsov, A.V., Roberts, W.L., Paxson, D.E.: Comparison between numerically simulated and experimentally measured flowfield quantities behind a pulsejet. Flow Turbul. Combust. 84, 653–667 (2010)

    Article  MATH  Google Scholar 

  6. Litke, P.J., Schauer, F.R., Paxson, D.E., Bradley, R.P., Hoke, J.L.: Assessment of the performance of a pulsejet and comparison with a pulsed-detonation engine. AIAA 2005–0228, 1–10 (2005)

    Google Scholar 

  7. Zinn, B.T.: Pulse combustion: recent applications and research issues (invited topical review). Proc. Combust. Inst. 24, 1297 (1992)

    Article  Google Scholar 

  8. Geng, T., Kiker, A., Ordon, R., Kuznetsov, A.V., Zeng, T.F., Roberts, W.L.: Combined numerical and experimental investigation of a hobby-scale pulsejet. J. Propuls. Power. 23, 186–193 (2007)

    Article  Google Scholar 

  9. Yungster, S., Paxson, D.E., Perkins, H.: Computational study of pulsejet-driven pressure gain combustors at high-pressure. In: 49th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. 1–17 (2013)

  10. Soto-Nicolas, A.: Measurements on quarterwavelength tubes and Helmholtz resonators. J. Acoust. Soc. Am. 123, 3842 (2008)

    Article  Google Scholar 

  11. Ingard, U.: On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25, 1037–1061 (1953)

    Article  Google Scholar 

  12. Geng, T., Zheng, F., Kiker, A.P., Kuznetsov, A.V., Roberts, W.L.: Experimental and numerical investigation of an 8-cm valveless pulsejet. Exp. Therm. Fluid Sci. 31, 641–647 (2007)

    Article  Google Scholar 

  13. Geng, T., Zheng, F., Kuznetsov, A.V., Roberts, W.L.: Numerical simulation on the effect of starting vortex ring on pulsejet thrust. In: 43rd AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. & Exhib (2007)

  14. St. George, A.C., Driscoll, R.B., Munday, D.E., Gutmark, E.J.: Development of a rotating detonation engine facility at the University of Cincinnati. In: 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reston, Virginia (2015)

  15. Driscoll, R., Randall, S., St. George, A., Anand, V., Gutmark, E.J.: Shock-initiated combustion in an airbreathing, pulse detonation engine-crossover system. AIAA J. 54, 936–945 (2015)

    Article  Google Scholar 

  16. Driscoll, R., St. George, A., Stoddard, W., Romanchuk, B., Munday, D., Gutmark, E.: Experimental study of shock transfer in a multiple pulse detonation-crossover system. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virigina (2012)

  17. Blomquist, C.A.: Experimental gas-fired pulse-combustion studies. Argonne National Laboratories. ANL/EES-TM-214 (1982)

  18. Alster, M.: Improved calculation of resonant frequencies of Helmholtz resonators. J. Sound Vib. 24, 63–85 (1972)

    Article  Google Scholar 

  19. Rubayi, N.A.: Acoustic vibrations in intake manifold system and the supercharging of engines. Appl. Acoust. 5, 39–53 (1972)

    Article  Google Scholar 

  20. Paris, E.T.: On doubly-resonated hot-wire microphones. Math. Phys. Character. 101, 391–410 (1922)

    Google Scholar 

  21. Paxson, D.E., Dougherty, K.: Ejector enhanced pulsejet based pressure gain combustors: an old idea with a new twist. In: 41st AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. 1–15 (2005)

  22. Griffin, S., Lane, S.A., Huybrechts, S.: Coupled helmholtz resonators for acoustic attenuation. J. Vib. Acoust. 123, 11 (2001)

    Article  Google Scholar 

  23. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  24. Berndt, P., Klein, R.: Modeling the kinetics of the shockless explosion combustion. Combust. Flame. 0, 1–11 (2016)

    Google Scholar 

  25. Lu, X., Han, D., Huang, Z.: Fuel design and management for the control of advanced compression-ignition combustion modes. Prog. Energy Combust. Sci. 37, 741–783 (2011)

    Article  Google Scholar 

  26. Bobusch, B.C., Berndt, P., Paschereit, C.O., Klein, R.: Shockless explosion combustion: an innovative way of efficient constant Volume Combustion in gas turbines. Combust. Sci. Technol. 186, 1680–1689 (2014)

    Article  Google Scholar 

  27. Berndt, P., Klein, R., Paschereit, C.O.: A kinetics model for the shockless explosion combustion. In: Volume 4B: Combustion, Fuels and Emissions. p. V04BT04A034. ASME (2016)

Download references

Funding

This project was funded by FMV Sweden. Project no: #380248 – LB875957

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Anand.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, V., Jodele, J., Knight, E. et al. Dependence of Pressure, Combustion and Frequency Characteristics on Valved Pulsejet Combustor Geometries. Flow Turbulence Combust 100, 829–848 (2018). https://doi.org/10.1007/s10494-017-9875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9875-1

Keywords

Navigation