Skip to main content
Log in

VLES Modeling of Flow Over Walls with Variably-shaped Roughness by Reference to Complementary DNS

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent flow over variably-shaped rough walls, characterized by either a regular or a random arrangement of axisymmetric roughness elements in an open channel flow configuration, is investigated computationally within a VLES (Very Large Eddy Simulation) framework by utilizing a volumetric forcing-based roughness model. The prime objective of the present work is to assess the roughness model’s capability to predict mean velocities and turbulent intensities in conjunction with this recently formulated hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) model. The friction velocity-based Reynolds number is in the range Reτ = 460 − 500. A non-dimensional drag function accounting for the shape of the roughness elements is introduced and evaluated based on the results of complementary direct numerical simulations (DNS). The dynamics of the residual motion of the presently adopted VLES methodology is described by an appropriately modified elliptic-relaxation-based ζf (\(\zeta =\overline {v^{2}}/k\)) RANS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhaganagar, K., Kim, J., Coleman, G.: Effect of roughness in wall-bounded turbulence. Flow, Turbul. Combust. 72, 463–492 (2004)

    Article  MATH  Google Scholar 

  2. Nikuradse, J.: Strömungsgesetze in rauen Rohren. VDI-Forschungshefte Band 361 (1933)

  3. Taylor, R.P., Coleman, H.W., Hodge, B.K.: Prediction of turbulent rough-wall skin friction using a discrete element approach. ASME J. Fluids Eng. 107, 251–257 (1985)

    Article  Google Scholar 

  4. Miyake, Y., Tsujimoto, K., Agata, Y.: A DNS of a turbulent flow in a rough-wall channel using roughness elements model. JSME Int. J. Series B 43(2), 233–242 (2000)

    Article  Google Scholar 

  5. Busse, A., Sandham, N.D.: Parametric forcing approach to rough-wall turbulent channel flow. J. Fluid Mech. 712, 169–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Forooghi, P., Stroh, A., Magagnato, F., Jakirlic, S., Frohnapfel, B.: Towards a universal roughness correlation. ASME J. Fluids Eng. 139(12), 121201–12201-12 (2017)

    Article  Google Scholar 

  7. Tarada, F.: Prediction of rough-wall boundary layers using a low Reynolds number kε model. Int. J. Heat Fluid Flow 11(4), 331–345 (1990)

    Article  Google Scholar 

  8. Stripf, M., Schulz, A., Bauer, H.-J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transferpart I: model formulations. J. Turbomach. 131(3), 031016 (2009)

    Article  Google Scholar 

  9. Bons, J.P., Taylor, R.P., McClain, S.T., Rivir, R.B.: The many faces of turbine surface roughness. J. Turbomach. 123(4), 739–748 (2001)

    Article  Google Scholar 

  10. Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: A review. AIAA J. 36(2), 173–184 (1998)

    Article  MATH  Google Scholar 

  11. Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model (PITM) for coarse grid and unsteady turbulent flow simulations. Theoret. Comput. Fluid Dyn. 18(6), 443–468 (2005)

    Article  MATH  Google Scholar 

  12. Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged navier-stokes (PANS) turbulence model. AIAA J. 49(12), 2627–2636 (2011)

    Article  Google Scholar 

  13. Hanjalić, K., Popovac, M., Hadz̆iabdić, M.: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 1047–1051 (2004)

    Article  Google Scholar 

  14. Chang, C.-Y., Jakirlić, S., Dietrich, K., Basara, B., Tropea, C.: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study. Int. J. Heat Fluid Flow 49, 28–42 (2014)

    Article  Google Scholar 

  15. Chang, C.-Y., Krumbein, B., Jakirlic, S., Tropea, C., Basara, B., Sadiki, A., Janicka, J., Böhm, B., Dreizler, A., Peterson, B.: Flow dynamics in IC-engine configurations simulated by scale-resolving models. International Multidimensional Engine Modeling (IMEM) User’s Group Meeting at the SAE Congress, Detroit, MI (2016)

    Google Scholar 

  16. Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B., Tropea, C.: Eddy-resolving Simulations of the Notchback DrivAer Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour. SAE Technical Paper Series, Paper No. 2016-01-1062 (2016)

  17. Aupoix, B.: Improved heat transfer predictions on rough surfaces. Int. J. Heat Fluid Flow 56, 160–171 (2015)

    Article  Google Scholar 

  18. Belcher, S.E., Jerram, N., Hunt, J.C.R.: Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369–398 (2003)

    Article  MATH  Google Scholar 

  19. Stripf, M., Schulz, A., Bauer, H.-J.: Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J. Turbomach. 130(2), 021003 (2008)

    Article  Google Scholar 

  20. Ashravian, A., Andersson, H.I., Manhart, M.: DNS of turbulent flow in a rod-roughened channel. Int. J. Heat Fluid Flow 25, 373–383 (2004)

    Article  Google Scholar 

  21. Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: SIMSON – A pseudo-spectral solver for incompressible boundary layer flow. KTH Mechanics, Stockholm (2007)

    Google Scholar 

  22. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993)

    Article  MATH  Google Scholar 

  23. Chan-Braun, C., Garcia-Villalba, M., Uhlmann, M.: Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684, 441–474 (2011)

    Article  MATH  Google Scholar 

  24. Townsend, A.A.: The structure of of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The financial support of the German Research Foundation (DFG) in the framework of the Collaborative Research Center/Transregio 150 (TP-B03 and TP-B02) is gratefully acknowledged. The authors furthermore would like to thank for the computing time granted on the Lichtenberg HPC at TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Krumbein.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krumbein, B., Forooghi, P., Jakirlić, S. et al. VLES Modeling of Flow Over Walls with Variably-shaped Roughness by Reference to Complementary DNS. Flow Turbulence Combust 99, 685–703 (2017). https://doi.org/10.1007/s10494-017-9867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9867-1

Keywords

Navigation