Flow, Turbulence and Combustion

, Volume 100, Issue 3, pp 627–649 | Cite as

Distributed Roughness Effects on Transitional and Turbulent Boundary Layers

  • Nagabhushana Rao VadlamaniEmail author
  • Paul G. Tucker
  • Paul Durbin


A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.


Roughness Transition Secondary instability Streaks Turbulent boundary layer Turbine blade 



Author Nagabhushana Rao Vadlamani gratefully acknowledge the financial support from the St. Catharine’s college, Cambridge through the Bowring research fellowship. The simulations are performed on UK Supercomputer ARCHER, to which access was provided through the UK Turbulence Consortium Grant No. EP/L000261/1. Computational time from Hartree center (STFC) under Xeon Phi Access Programme is also acknowledged.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 021,004 (2010)CrossRefGoogle Scholar
  2. 2.
    Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRefGoogle Scholar
  3. 3.
    Reshotko, E.: Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 1067–1075 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Braslow, A.L.: Review of the Effect of Distributed Surface Roughness on Boundary-Layer Transition. Tech. rep., DTIC Document (1960)Google Scholar
  5. 5.
    Montomoli, F., Hodson, H., Haselbach, F.: Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. J. Turbomach. 132(3), 031,018 (2010)CrossRefGoogle Scholar
  6. 6.
    Stripf, M., Schulz, A., Bauer, H.J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transfer—part i: model formulations. J. Turbomach. 131(3), 031,016 (2009)CrossRefGoogle Scholar
  7. 7.
    De Tullio, N., Paredes, P., Sandham, N., Theofilis, V.: Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernardini, M., Pirozzoli, S., Orlandi, P.: Compressibility effects on roughness-induced boundary layer transition. Int. J. Heat Fluid Flow 35, 45–51 (2012)CrossRefGoogle Scholar
  9. 9.
    Iyer, P., Muppidi, S., Mahesh, K.: Roughness-induced transition in high speed flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 566 (2011)Google Scholar
  10. 10.
    Redford, J.A., Sandham, N.D., Roberts, G.T.: Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48(12), 2818–2830 (2010)CrossRefGoogle Scholar
  11. 11.
    Muppidi, S., Mahesh, K.: Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 28–56 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Roberts, S., Yaras, M.: Boundary-layer transition affected by surface roughness and free-stream turbulence. J. Fluids Eng. 127(3), 449–457 (2005)CrossRefGoogle Scholar
  13. 13.
    Nikuradse, J.: Laws of flow in rough pipes. In: VDI Forschungsheft. Citeseer (1933)Google Scholar
  14. 14.
    Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  15. 15.
    Jimenez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Leonardi, S., Orlandi, P., Smalley, R., Djenidi, L., Antonia, R.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chung, D., Chan, L., MacDonald, M., Hutchins, N., Ooi, A.: A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431 (2015)CrossRefGoogle Scholar
  18. 18.
    Chatzikyriakou, D., Buongiorno, J., Caviezel, D., Lakehal, D.: Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int. J. Heat Fluid Flow 53, 29–43 (2015)CrossRefGoogle Scholar
  19. 19.
    Licari, A., Christensen, K.: Modeling cumulative surface damage and assessing its impact on wall turbulence. AIAA J. 49(10), 2305–2320 (2011)CrossRefGoogle Scholar
  20. 20.
    Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lee, J.H., Sung, H.J., Krogstad, P.Å.: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Lee, S.H., Sung, H.J.: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Simens, M.P., Gungor, A.G.: The effect of surface roughness on laminar separated boundary layers. J. Turbomach. 136(3), 031,014 (2014)CrossRefGoogle Scholar
  24. 24.
    Sengupta, A., Vadlamani, N.R., Tucker, P.G.: Roughness induced transition in low pressure turbines. In: 55th AIAA Aerospace Sciences Meeting, p. 0303 (2017)Google Scholar
  25. 25.
    Vadlamani, N.R.: Numerical Investigation of Separated Flows in Low Pressure Turbines. Ph.D. thesis, University of Cambridge (2014)Google Scholar
  26. 26.
    Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Investigation of wake induced transition in low-pressure turbines using large eddy simulation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V06CT42A008–V06CT42A008. American Society of Mechanical Engineers (2013)Google Scholar
  27. 27.
    Matsuura, K., Kato, C.: Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade. AIAA J. 45(2), 442–457 (2007)CrossRefGoogle Scholar
  28. 28.
    Rizzetta, D.P., Visbal, M.R.: Direct numerical simulations of flow past an array of distributed roughness elements. AIAA J. 45(8), 1967–1976 (2007)CrossRefGoogle Scholar
  29. 29.
    Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(04), 1259–1286 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Leonardi, S., Orlandi, P., Antonia, R.A.: Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19(12), 125,101 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gaitonde, D.V., Visbal, M.R.: High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into Fdl3di. Tech. rep., DTIC Document (1998)CrossRefGoogle Scholar
  33. 33.
    Rao, V.N., Tucker, P.G.: Intake lip separation control using plasma actuators. In: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016)Google Scholar
  34. 34.
    Choudhari, M., Fischer, P.: Roughness induced transient growth. In: 35th AIAA Fluid Dynamics Conference and Exhibit, p. 4756 (2005)Google Scholar
  35. 35.
    Ergin, F.G., White, E.B.: Unsteady and transitional flows behind roughness elements. AIAA J. 44(11), 2504–2514 (2006)CrossRefGoogle Scholar
  36. 36.
    Reda, D.C.: Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rocket. 39(2), 161–167 (2002)CrossRefGoogle Scholar
  37. 37.
    Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hack, M., Zaki, T.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Loiseau, J.C., Robinet, J.C., Cherubini, S., Leriche, E.: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084,110 (2015)CrossRefGoogle Scholar
  41. 41.
    Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)CrossRefzbMATHGoogle Scholar
  42. 42.
    Bose, R., Durbin, P.A.: Helical modes in boundary layer transition. Physical Review Fluids 1(7), 073,602 (2016)CrossRefGoogle Scholar
  43. 43.
    Denissen, N.A., White, E.B.: Secondary instability of roughness-induced transient growth. Phys. Fluids 25(11), 114,108 (2013)CrossRefGoogle Scholar
  44. 44.
    Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Schultz, M., Flack, K.: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)CrossRefzbMATHGoogle Scholar
  46. 46.
    Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)CrossRefzbMATHGoogle Scholar
  47. 47.
    Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010)CrossRefzbMATHGoogle Scholar
  48. 48.
    Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34(21), 8964–8973 (2009)CrossRefGoogle Scholar
  49. 49.
    Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: Dns of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Smalley, R., Leonardi, S., Antonia, R., Djenidi, L., Orlandi, P.: Reynolds stress anisotropy of turbulent rough wall layers. Exp. Fluids 33(1), 31–37 (2002)CrossRefGoogle Scholar
  51. 51.
    Jackson, P.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Nagabhushana Rao Vadlamani
    • 1
    Email author
  • Paul G. Tucker
    • 1
  • Paul Durbin
    • 2
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of Aerospace EngineeringIowa State UniversityAmesUSA

Personalised recommendations