Subgrid Model Influence in Large Eddy Simulations of Non-reacting Flow in a Gas Turbine Combustor

Abstract

Fuel efficiency improvement and harmful emission reduction are the paramount driving forces for development of gas turbine combustors. Lean-burn combustors can accomplish these goals, but require specific flow topologies to overcome their sensitivity to combustion instabilities. Large Eddy Simulations (LES) can accurately capture these complex and intrinsically unsteady flow fields, but estimating the appropriate numerical resolution and subgrid model(s) still remain challenges. This paper discusses the prediction of non-reacting flow fields in the DLR gas turbine model combustor using LES. Several important features of modern gas turbine combustors are present in this model combustor: multiple air swirlers and recirculation zones for flame stabilisation. Good overall agreement is obtained between LES outcomes and experimental results, both in terms of time-averaged and temporal RMS values. Findings of this study include a strong dependence of the opening angle of the swirling jet inside the combustion chamber on the subgrid viscosity, which acts mainly through the air mass flow split between the two swirlers in the DLR model combustor. This paper illustrates the ability of LES to obtain accurate flow field predictions in complex gas turbine combustors making use of open-source software and computational resources available to industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Stöhr, M., Boxx, I., Carter, C.D., Meier, W.: Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159, 2636–2649 (2012)

    Article  Google Scholar 

  2. 2.

    Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137, 489–505 (2004)

    Article  Google Scholar 

  3. 3.

    Huang, Y., Yang, V.: Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc. Combust. Inst. 30(2), 1775–1782 (2005)

    Article  Google Scholar 

  4. 4.

    Weigand, P., Meier, W., Duan, X.R., Stricker, W., Aigner, M.: Investigation of swirl flames in a gas turbine model combustor 1: flow-field, structures, temperature and species distributions. Combust. Flame 144, 205–224 (2006)

    Article  Google Scholar 

  5. 5.

    Moin, P., Apte, S.V.: Large-Eddy Simulation of realistic gas turbine combustors. AIAA J. 44(4), 698–708 (2006)

    Article  Google Scholar 

  6. 6.

    Boudier, G., Gicquel, L.Y.M., Poinsot, T., Bisssieres, D., Bérat, C.: Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proc. Combust. Inst. 31(2), 3075–3082 (2007)

    Article  Google Scholar 

  7. 7.

    Di Mare, F., Jones, W.P., Menzies, K.R.: Large eddy simulation of a model gas turbine combustor. Combust. Flame 137, 278–294 (2004)

    Article  Google Scholar 

  8. 8.

    Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES Of an ignition sequence in a gas turbine engine. Combust. Flame 154, 2–22 (2008)

    Article  Google Scholar 

  9. 9.

    Staffelbach, G., Giquel, L.Y.M., Boudier, G., Poinsot, T.: Large Eddy Simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32(2), 2909–2916 (2009)

    Article  Google Scholar 

  10. 10.

    Widenhorn, A., Noll, B., Aigner, M.: Numerical study of a non-reacting turbulent flow in a gas turbine model combustor (AIAA 2009-647). In: Proceedings of the 47th AIAA Aerospace Sciences Meeting. AIAA (2009)

  11. 11.

    Wankhede, M., Tap, F., Schapotschnikow, P., Ramaekers, W.J.S.: Numerical study of unsteady flow-field and flame dynamics in a gas turbine model combustor (GT 2014-25784). In: Proceedings of ASME Turbo Expo 2014. ASME (2014)

  12. 12.

    See, Y.C., Ihme, M.: Large Eddy Simulation of a gas turbine model combustor (AIAA 2013-0172). In: Proceedings of the 51st AIAA Aerospace Sciences Meeting. AIAA (2013)

  13. 13.

    See, Y.C., Ihme, M.: LES investigation of flow field sensitivity in a gas turbine model combustor (AIAA 2014-0621). In: Proceedings of the 52nd AIAA Aerospace Sciences Meeting. AIAA (2014)

  14. 14.

    Goodwin, D.G., Moffat, H.K., Speth, R.L.: CANTERA, An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (version 2.2.0). http://www.cantera.org (2015). Accessed 02 August 2015

  15. 15.

    Stull, D.R., Prophet, H.: JANAF Thermochemical Tables, 2nd edn. U.S. National Bureau of Standards, Washington (1971)

    Google Scholar 

  16. 16.

    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., Qin, Z.: GRI Mech 3.0. http://www.me.berkeley.edu/gri_mech. Accessed 02 August 2015

  17. 17.

    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  18. 18.

    Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.P.: Large-Eddy Simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)

    Article  MATH  Google Scholar 

  19. 19.

    Wang, S., Hsieh, S.Y., Yang, V.: Unsteady flow evolution in swirl injector with radial entry. 1: stationary conditions. Phys. Fluids 17(045106), 1–13 (2005)

    MATH  Google Scholar 

  20. 20.

    Wang, S., Yang, V., Hsiao, G., Hsieh, S.Y., Mongia, H.C.: Large Eddy Simulation of gas turbine swirl injector flow dynamics. J. Fluid Mech. 583, 99–122 (2007)

    Article  MATH  Google Scholar 

  21. 21.

    Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  23. 23.

    Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670–3681 (2004)

    Article  MATH  Google Scholar 

  24. 24.

    Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141, 40–54 (2005)

    Article  Google Scholar 

  25. 25.

    Yoshizawa, A., Horiuti, K.: A statistically-derived subgrid scale kinetic energy model for large-eddy simulation of turbulent flows. J. Phys. Soc. Japan 54, 2834–2839 (1985)

    Article  Google Scholar 

  26. 26.

    Fureby, C.: On subgrid scale modeling in large eddy simulations of compressible fluid flow. Phys. Fluids 8, 1301–1311 (1996)

    Article  MATH  Google Scholar 

  27. 27.

    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  28. 28.

    Peyret, R., Krause, E. (eds.): Advanced turbulent flow computations. Springer, Wien (2000)

  29. 29.

    Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377 (1982)

    Article  MATH  Google Scholar 

  30. 30.

    Van Driest, E.R.: On turbulent flow near a wall. J. Aero. Sci. 23, 1007–1011 (1956)

    Article  MATH  Google Scholar 

  31. 31.

    Weigand, P.: Investigation of periodical instabilities of confined turbulent swirl flames with laser based measurement techniques. DLR Forschungsbericht 2007-19. Deutsches Zentrum für Luft- und Raumfahrt (2007)

  32. 32.

    Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)

    Article  Google Scholar 

  33. 33.

    Nieuwstadt, F.T.M., Westerweel, J., Boersma, B.J.: Turbulence. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  34. 34.

    Pope, S.B.: Ten questions concerning the Large-Eddy Simulation of turbulent flows. New J. Phys. 6, 35 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Support of the EU PRACE-3IP project (FP7 RI-312763) and SURFsara (The Netherlands) is gratefully acknowledged; the assistance from SURFsara’s consultant John Donners deserves to be noted specifically. Financial support by the Nederlandse Vereniging voor Vlamonderzoek (NVV) is also greatly appreciated. The authors thank Wolfgang Meier and Michael Stöhr from DLR, Germany for sharing the combustor geometry and experimental data for comparisons.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. J. S. Ramaekers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramaekers, W.J.S., Tap, F.A. & Boersma, B.J. Subgrid Model Influence in Large Eddy Simulations of Non-reacting Flow in a Gas Turbine Combustor. Flow Turbulence Combust 100, 457–479 (2018). https://doi.org/10.1007/s10494-017-9853-7

Download citation

Keywords

  • Gas turbine combustor
  • Turbulent swirling flow
  • Large eddy simulation