Skip to main content
Log in

Bluff-body Thermal Property and Initial State Effects on a Laminar Premixed Flame Anchoring Pattern

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Bluff-body stabilized laminar flames remain at the root of many industrial applications. Such a simple flame arrangement although steady results from complex chemical, flow mixing as well as solid body thermal interactions that are still today misunderstood. Numerically, accurate predictions of such non linear problems require Conjugate Heat Transfer (CHT) approaches that are seldom because of the need for complex fluid flow solvers as well as multi-physics coupling strategies that are computationally expensive and difficult to master. Such numerical tools however provide access to fundamental elements otherwise inaccessible. Relying on Direct Numerical Simulation (DNS) CHT based predictions, the following work underlines several key features of importance to predict and understand square bluff-body stabilized flames. In the case of fluid only predictions, where the bluff-body wall temperature is fixed and assumed constant, three possible flame topologies are obtained and respectively qualified as anchored, lifted and bowed flames. Out of these three stable flow solutions, only two topologies are found physically possible whenever computed in a CHT context. Furthermore, depending on the solid material and the initial solution, the non linear CHT problem exhibits multiple solutions highlighting the complex coupling that can arise. As evidenced by these simple flame problems, such a behavior higlights the potential difficulties of predicting flame wall interaction problems where coupling schemes and turbulent closures / modeling will be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Duchaine, F., Mendez, S., Nicoud, F., Corpron, A., Moureau, V., Poinsot, T.: Conjugate heat transfer with large eddy simulation application to gas turbine components. C. R. Acad. Sci. Mécanique 337, 550–561 (2009)

    Article  Google Scholar 

  2. Bhaskaran, R., Lele, S.K.: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. Journal of Turbulence, N6. http://www.tandfonline.com/doi/pdf/10.1080/14685241003705756 (2010)

  3. Maheu, N., Moureau, V., Domingo, P., Duchaine, F., Balarac, G.. In: Proceedings of the Summer Program, edited by Center for Turbulence Research, NASA Ames/Stanford University, Large-eddy simulations of flow and heat transfer around a low-mach number turbine blade (2012)

  4. ColladoMorata, E., Gourdain, N., Duchaine, F., Gicquel, L.: Effects of free-stream turbulence on high pressure turbine heat transfer predicted by structured and unstructures les. Int. J. Heat Mass Transfer 55, 5754–68 (2012)

    Article  Google Scholar 

  5. Duchaine, F., Maheu, N., Moureau, V., Balarac, G., Moreau, S.: Large eddy simulation and conjugate heat transfer around a low-mach turbine blade. J. Turbomach. 136 (2013)

  6. Jauré, S., Duchaine, F., Staffelbach, G., Gicquel, L.: Massively parallel conjugate heat transfer solver based on large eddy simulation and application to an aeronautical combustion chamber. Comput. Sci. Disc. 6 (2013)

  7. Berger, S., Richard, S., Duchaine, F., Staffelbach, G., Gicquel, L.: On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads. Appl. Therm. Eng. 103, 1450–1459 (2016)

    Article  Google Scholar 

  8. Sagaut, P.: Large Eddy Simulation for Incompressible Flows Scientific Computation Series. Springer (2000)

  9. Pope, S.B.: Stochastic lagrangian models of velocity in homogeneous turbulent shear flow. Phys. Fluids 14, 1696–1702 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koren, C., Viquelin, R., Gicquel, O.: Self-adaptive coupling frequency for unsteady coupled conjugate heat transfer simulations. Int. J. Therm. Sci. 118, 340–354 (2017)

    Article  Google Scholar 

  11. Kedia, K., Safta, C., Ray, J., Najm, H., Ghoniem, A.: A second-order coupled immersed boundary-samr construction for chemically reacting flow over a heat-conducting cartesian gridconforming solid. J. Comput. Phys. 272, 408–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kedia, K., Ghoniem, A.: The anchoring mechanism of a bluff-body stabilized laminar premixed flame. Combust. Flame 161, 327–339 (2014)

    Article  Google Scholar 

  13. Kedia, K.S., Ghoniem, A.F.: The blow-off mechanism of a bluff-body stabilized laminar premixed flame. Combust. Flame 162, 1304–1315 (2015)

    Article  Google Scholar 

  14. Kedia, K.S., Ghoniem, A.F.: The response of a hamonically forced premixed flame stabilized on a heat-conducting bluff-body. Combust. Flame 35, 1065–1072 (2015)

    Google Scholar 

  15. Williams, G., Shiman, C.: Some properties of rod-stabilized flame c homogeneous gas mixtures. Proc. Combust. Inst. 4, 733–742 (1953)

    Article  Google Scholar 

  16. Kundu, K., Banerjee, D., Bhadhuri, D.: Theoretical analysis on flame stabilization by a bluff-body. Comb. Sci. Technol. 17, 153–162 (1977)

    Article  Google Scholar 

  17. Kundu, K., Banerjee, D., Bhadhuri, D.: On flame stabilization by bluff-bodies. J. Eng. Power 102, 209–214 (1980)

    Article  Google Scholar 

  18. Kiel, B., abd, K.G., Gord, J., Miller, J., Lynch, A., Hill, R., Phillips, S.: A detailed investigation of bluff-body stabilized flames. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2007-168 edited by AIAA (2007)

  19. Fan, A., Wan, J., abd, K.M., Yao, H., Liu, W.: Interaction between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body. Int. J. Heat Mass Transfer 66, 72–79 (2013)

    Article  Google Scholar 

  20. Longwell, J., Frost, E., Weiss, M.: Flame stability in bluff body recirculation zones. Ind. Eng. Chem. 45(8), 1629–1633 (1953). https://doi.org/10.1021/ie50524a019

    Article  Google Scholar 

  21. Kao, K.H., Liou, M.S.: Application of chimera/unstructured hybrid grids for conjugate heat transfer. AIAA J. 35, 1472–1478 (1997)

    Article  MATH  Google Scholar 

  22. Han, Z.X., Dennis, B., Dulikravich, G.: Simultaneous prediction of external flow-field and temperature in internally cooled 3-d turbine blode material. Int. J. Turbomach. 18, 47–58 (2001)

    Google Scholar 

  23. Rahman, F., Visser, J.A., Morris, R.M.: Capturing sudden increase in heat transfer on the suction side of a turbine blade using a navier-stokes solver. J. Turbomach. 127, 552–556 (2005)

    Article  Google Scholar 

  24. Ganesan, V.: Non-reacting and reacting flow analysis in an aero-engine gas turbine combustor using cfd. In: SAE World Congress, p. 2007, Michigan, USA (2007)

  25. Craig, A., Vertenstein, M., Jacob, R.: A new flexible coupler for earth system modeling developed for ccsm4 and cesm1. Int. J. High Perform. Comput. Appl. 26, 31–42 (2012)

    Article  Google Scholar 

  26. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  Google Scholar 

  27. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  MATH  Google Scholar 

  28. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for Large-Eddy Simulation of kerosene-air flames. Combust. Flame 157, 1364–1373 (2010)

    Article  Google Scholar 

  30. Peters, N.: Laminar flamelet concepts in turbulent combustion. In: 21st Symposium (International) on Combustion, pp 1231–1250. The Combustion Institute, Pittsburgh (1986)

  31. Blint, R.J.: The relationship of the laminar flame width to flame speed. Combust. Sci. Tech. 49, 79–92 (1986)

    Article  Google Scholar 

  32. Von Kármán, T., Millan, G.: Thermal Theory of Laminar Flame Front Near Cold Wall, pp 173–177. The Combustion Institute, Pittsburgh, Munich (1953)

    Google Scholar 

  33. Williams, F.A.: Combustion Theory. Benjamin Cummings, Menlo Park, CA (1985)

    Google Scholar 

  34. Lu, J.H., Ezekoye, O., Greif, R., Sawyer, F.: Unsteady heat transfer during side wall quenching of a laminar flame. In: 23rd Symposium (International) on Combustion, pp 441–446. The Combustion Institute, Pittsburgh (1990)

  35. Grag, V.: Heat transfer research on gas turbine airfoils at nasa grc. Int. J. Heat Fluid Flow 23, 109–36 (2002)

    Article  Google Scholar 

  36. Sondak, D.L., Dorney, D.J.: Simulation of coupled unsteady flow and heat conduction in turbine stage. J. Prop. Power 16, 1141–1148 (2000)

    Article  Google Scholar 

  37. Papanicolaou, E., Giebert, D., Koch, R., Schultz, A.: A conservation-based discretization approach for conjugate heat transfer calculations in hot-gas ducting turbomachinery components. Int. J. Heat Mass Transfer 44, 3413–3429 (2001)

    Article  MATH  Google Scholar 

  38. Bohn, D., Ren, J., Kusterer, K.: Systematic investigation on conjugate heat transfer rates of film cooling configurations. J. Rotating Mach. 2005, 211–220 (2005)

    Article  Google Scholar 

  39. DeCecchis, D., Drummond, L., Castillo, J.: Design of a Distributed Coupling Toolkit for High Performance Computing Environment. Mathematical and Computer Modelling (2011)

  40. Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R.W., Jacob, R., Larson, J., O’Kuinghttons, R., Riley, G.D., Vertenstein, M.: Coupling technologies for earth system modelling. Geosci. Model Dev. Discuss. 5, 1987–2006 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper has largely benefited from CERFACS supercomputers as well as granted access to the HPC resources of [TGCC/CINES/IDRIS] under the allocation x20162b7525 made by GENCI. These supports are greatly acknowledged. The authors are grateful to SAFRAN HE for partially funding this work. The authors also thank people of the CFD team for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. M. Gicquel.

Ethics declarations

Funding: This PhD study was funded by SAFRAN HE (though the funding of S. Berger). The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, S., Duchaine, F. & Gicquel, L.Y.M. Bluff-body Thermal Property and Initial State Effects on a Laminar Premixed Flame Anchoring Pattern. Flow Turbulence Combust 100, 561–591 (2018). https://doi.org/10.1007/s10494-017-9841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9841-y

Keywords

Navigation