Skip to main content
Log in

Numerical Study of Turbulent Jet Ignition in a Lean Premixed Configuration

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulations (DNS) of a hot combustion product jet interacting with a lean premixed hydrogen-air coflow are conducted to fundamentally investigate turbulent jet ignition (TJI) in a three-dimensional configuration. TJI is an efficient method for initiating and controlling combustion in ultra-lean combustion systems. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a reliable detailed chemical kinetics mechanism. The physical processes involved in the TJI-assisted combustion are investigated by considering the flame heat release, temperature, species concentrations, vorticity, and Baroclinc torque. The complex turbulent flame and flow structures are delineated in three main: i) hot product jet, ii) burned-mixed, and iii) flame zones. In the TJI-assisted combustion, the flow structures and the flame features such as flame speed, temperature, and species distribution are found to be quite different than those in “standard” turbulent premixed combustion due to the existence of a high energy turbulent hot product jet. The flow structures and statistics are also found to be different than those normally seen in non-isothermal non-reacting jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lodier, G., Merlin, C., Domingo, P., Vervisch, L., Ravet, F.: Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature. J. Combust. Flame 159(11), 3358–3371 (2012)

    Article  Google Scholar 

  2. Jin, T., Luo, K., Lu, S., Fan, J.: DNS, investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated coflow. Int. J. Hydro. Energy 38(23), 9886–9896 (2013)

    Article  Google Scholar 

  3. Mittal, G., Raju, M., Sung, C.: CFD, modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach. J. Combust. Flame 157(7), 1316–1324 (2010)

    Article  Google Scholar 

  4. Carpio, J., Iglesias, I., Vera, M., Sánchez, A., Liñán, A.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydro. Energy 38(7), 3105–3109 (2013)

    Article  Google Scholar 

  5. Dorofeev, S., Bezmelnitsin, A., Sidorov, V., Yankin, J., Matsukov, I.: Turbulent jet initiation of detonation in hydrogen-air mixtures. Shock Waves 6(2), 73–78 (1996)

    Article  Google Scholar 

  6. Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a pdf/redim method. Proc. Combust. Inst. 35(2), 2191–2198 (2015)

    Article  Google Scholar 

  7. Boivin, P., Dauptain, A., Jiménez, C., Cuenot, B.: Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. J. Combust. Flame 159(4), 1779–1790 (2012)

    Article  Google Scholar 

  8. Djebaili, N., Lisbet, R., Dupre, G., Patillard, C.: Ignition of a combustible mixture by a hot unsteady gas jet. Combust. Sci. Technol. 104, 273–285 (1995)

    Article  Google Scholar 

  9. Iglesias, I., Vera, M., Sanchez, A.L., Linan, A.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theory Modell. 16(6), 994–1010 (2012)

    Article  Google Scholar 

  10. Phillips, H.: Ignition in a transient turbulent jet of hot inert gas. J. Combust. Flame 19(2), 187–195 (1972)

    Article  Google Scholar 

  11. Sadanandan, R., Markus, D., Schießl, R., Maas, U., Olofsson, J., Seyfried, H., Richter, M., AldénAldén, M.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)

    Article  Google Scholar 

  12. Pope, S.: Turbulent Flows. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  13. James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. J. Combust. Flame 123(4), 465–487 (2000)

    Article  Google Scholar 

  14. Gordeyev, S., Thomas, F.: Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145–194 (2000)

    Article  MATH  Google Scholar 

  15. Gunnar, H.: Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 32 (4), 721–734 (1965)

    Article  Google Scholar 

  16. Hinze, J.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  17. Pope, S.: Calculations of a plane turbulent jet. AIAA J. 22(7), 896–904 (1983)

    Article  MATH  Google Scholar 

  18. Heskestad, G.: Hot-wire measurements in a plane turbulent jet1. J. Appl. Mech. 32, 721–734 (1965)

    Article  Google Scholar 

  19. Kee, R., Rupley, F., Miller, J.: Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics (1989)

  20. Jaberi, F., Miller, R., Mashayek, F., Givi, P.: Differential diffusion in binary scalar mixing and reaction. J. Combust. Flame 109(4), 561–577 (1997)

    Article  Google Scholar 

  21. Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets. J. Combust. Flame 06, 285–299 (1991)

    Article  Google Scholar 

  22. Arndt, C., Schiel, R., Gounder, J., Meier, W., Aigner, M.: Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: Influence of temperature. Proc. Combust. Inst. 34(1), 1483–1490 (2013)

    Article  Google Scholar 

  23. Bezgin, L., Kopchenov, V., Sharipov, A., Titova, N., Starik, A.: Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows. Combust. Sci. Technol. 185(1), 62–94 (2013)

    Article  Google Scholar 

  24. Ju, Y., Niioka, T.: Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer. J. Combust. Flame 99, 240–246 (1994)

    Article  Google Scholar 

  25. Vagelopoulos, C., Egolfopoulos, F., Law, C.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Symp.(Int.) Combust. 25(1), 1341–1347 (1994)

    Article  Google Scholar 

  26. Lele, S.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Poinsot, T., Lelef, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kennedy, C., Carpenter, M., Lewis, R.: Low-storage, explicit runge–kutta schemes for the compressible navier–stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Afshari, A., Jaberi, F., Shih, T. P.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576–1592 (2008)

    Article  Google Scholar 

  30. Banaeizadeh, A., Afshari, A., Schock, H., Jaberi, F.: Large-eddy simulations of turbulent flows in internal combustion engines. Int. J Heat Mass Transfer 60, 781–796 (2013)

    Article  Google Scholar 

  31. Banaeizadeh, A., Li, Z., Jaberi, F.: Compressible scalar filtered mass density function model for high-speed turbulent flows. AIAA J. 49(10), 2130–2143 (2011)

    Article  Google Scholar 

  32. Li, Z., Banaeizadeh, A., Rezaeiravesh, S., Jaberi, F.: Advanced modeling of high speed turbulent reacting flows. In: 50th AIAA Aerospace Sciences Meeting (2012)

  33. Steinberger, C., Vidoni, T., Givi, P.: The compositional structure and the effects of exothermicity in a nonpremixed planar jet flame. J. Combust. Flame 94(3), 217–232 (1993)

    Article  Google Scholar 

  34. Rehm, J., Clemens, N.: The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames. Symp. (Int.) Combust. 27(1), 1113–1120 (1998)

    Article  Google Scholar 

  35. Yaldizli, M., Mehravaran, K., Mohammad, H., Jaberi, F.: The structure of partially premixed methane flames in high-intensity turbulent flows. J. Combust. Flame 154(4), 692–714 (2008)

    Article  Google Scholar 

  36. Donovan, L., Todd, C.: Computer program for calculating isothermal turbulent jet mixing of two gases (1968)

  37. Pathak, M., Dewan, A., Dass, A.: Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. Int. J. Heat Mass Transfer 49(21–22), 3914–3928 (2006)

    Article  MATH  Google Scholar 

  38. Pitts, W.: Importance of isothermal mixing processes to the understanding of lift-off and blowout of turbulent jet diffusion flames. J. Combust. Flame 76(2), 197–212 (1989)

    Article  Google Scholar 

  39. Rowinski, D., Pope, S.: An investigation of mixing in a three-stream turbulent jet. Phys. Fluids 25(10), 105–140 (2013)

    Article  Google Scholar 

  40. Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity lewis numbers. J. Combust. Flame 94(1–2), 41–57 (1993)

    Article  Google Scholar 

  41. Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. J.s Comb. Flame 161(12), 3073–3084 (2014)

    Article  Google Scholar 

  42. Paul, P., Najm, H.: Planar laser-induced fluorescence imaging of flame heat release rate. Symp. (Int.) Combust. 27(1), 43–50 (1998)

    Article  Google Scholar 

  43. Najm, H., Paul, P., Mueller, C., Wyckoff, P.: On the adequacy of certain experimental observables as measurements of flame burning rate. J. Combust. Flame 113(3), 312–332 (1998)

    Article  Google Scholar 

  44. Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Progress Energy Combust. Sci. 11(1), 1–59 (1985)

    Article  Google Scholar 

  45. Pope, S.: Turbulent premixed flames. Ann. Rev.of Fluid Mech. 19, 237–270 (1987)

    Article  Google Scholar 

  46. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. (Int.) Combust. 27(1), 917–925 (1998)

    Article  Google Scholar 

  47. Driscoll, J.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress Energy Combust. Sci. 34(1), 91–134 (2008)

    Article  Google Scholar 

  48. Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ildm with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)

    Article  Google Scholar 

  49. Griffiths, R., Chen, J., Kolla, H., Cant, R., Kollmann, W.: Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35(2), 1341–1348 (2015)

    Article  Google Scholar 

  50. Lee, D, Huh, K.: DNS, analysis of propagation speed and conditional statistics of turbulent premixed flame in a planar impinging jet. Proc. Combust. Inst. 33(1), 1301–1307 (2011)

    Article  Google Scholar 

  51. Lipatnikov, A., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Progress Energy Combust. Sci 36(1), 1–102 (2010)

    Article  Google Scholar 

  52. Lipatnikov, A., Chomiak, J., Sabelnikov, V., Nishiki, S., Hasegawa, T.: Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35(2), 1401–1408 (2015)

    Article  Google Scholar 

  53. Lu, S., Fan, J., Luo, K.: High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated co-flow air. Int. J. Hydro. Energy 37 (4), 3528–3539 (2012)

    Article  Google Scholar 

  54. Wang, H., Luo, K., Lu, S., Fan, J.: Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydro. Energy 36(21), 13838–13849 (2011)

    Article  Google Scholar 

  55. Kotsovinos, N.: A note on the spreading rate and virtual origin of a plane turbulent jet. J. Fluid Mech. 77, 305–311 (1976)

    Article  Google Scholar 

  56. Beerer, D., McDonell, V., Therkelsen, P., Cheng, R.K.: Flashback and turbulent flame speed measurements in hydrogen/methane flames stabilized by a low-swirl injector at elevated pressures and temperature. J. Eng. Gas Turbi. Power 136, 20242–20254 (2014)

    Google Scholar 

  57. Lin, Y., Jansohn, P., Boulouchos, K.: Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions. Int. J. Hydro. Energy 39(35), 20242–20254 (2014)

    Article  Google Scholar 

  58. Seitzman, J., Lieuwen, T.: Turbulent flame propagation characteristics of high hydrogen content fuels (2014)

  59. Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H: Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0. Exper. Thermal Fluid Sci. 68, 196–204 (2015)

    Article  Google Scholar 

  60. Kriaa, W., Abderrazak, K., Mhiri, H., Le Palec, G., Bournot, P.: A numerical study of non-isothermal turbulent coaxial jets. J. Heat Mass Transfer 44(9), 1051–1063 (2007)

    Article  Google Scholar 

  61. Westerweel, J., Petracci, A., Delfos, R., Hunt, J.C.R.: Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet. Philos. Trans. R Soc. London Math. Phys. Eng. Sci. 369(1937), 723–737 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant CBET-1258581. The authors would like to acknowledge the Institute for Cyber-Enabled Research at Michigan State University and the Texas Advanced Computing Center at the University of Texas at Austin for providing HPC resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AbdoulAhad Validi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Validi, A., Jaberi, F. Numerical Study of Turbulent Jet Ignition in a Lean Premixed Configuration. Flow Turbulence Combust 100, 197–224 (2018). https://doi.org/10.1007/s10494-017-9837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9837-7

Keywords

Navigation