Skip to main content
Log in

Quenching of Premixed Flames at Cold Walls: Effects on the Local Flow Field

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The presence of a turbulent premixed flame strongly influences the properties of the adjacent velocity boundary layer. This influence is studied here using a generic configuration where at atmospheric pressure turbulent premixed methane/air flames interact with a temperature stabilized wall. The experiment is optimized for well-defined boundary conditions and optical accessibility in the zone where the flame impinges at the wall. Laser based diagnostic methods are used to measure two components of the velocity field by particle image velocimetry simultaneously with the flame front position using laser induced fluorescence of the OH molecule. Two measurement planes are selected that are aligned perpendicularly to the surface of the wall. Based on this data, the flow field near the wall is analyzed by different methodologies using laboratory-fixed and flame-conditioned statistics, a quadrant splitting analysis of the Reynolds stresses and an evaluation of the production term of the turbulent kinetic energy. The results of chemically reactive cases are compared to their corresponding non-reactive flows for otherwise identical inflow conditions. In the zone of flame-wall interactions the boundary layer structure and its turbulence are dominated by the turbulent flame. Important features are that the flame compresses the boundary layer already upstream the location where the flame is finally quenched and that ejection and sweeps are no longer the dominant mechanisms as in non-reactive boundary layers. This experimental data may serve additionally as a database for model development for near wall reactive flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energ. Combust. 25, 253–273 (1999)

    Article  Google Scholar 

  2. Epstein, A.H.: Aircraft engines’ needs from combustion science and engineering. Combust. Flame 159, 1791–1792 (2012)

    Article  Google Scholar 

  3. Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)

    Article  Google Scholar 

  4. Poinsot, T., Haworth, D., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118–132 (1993)

    Article  Google Scholar 

  5. Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.H.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 27–36 (1996)

    Article  Google Scholar 

  6. Lai, J., Chakraborty, N.: Effects of lewis number on head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Flow Turbul. Combust. 96, 279–308 (2016)

    Article  Google Scholar 

  7. Rißmann, M., Jainski, C., Mann, M., Dreizler, A.: Flame-flow interaction in premixed turbulent flames during transient head-on quenching. Flow Turbul. Combust. 98, 1025–1038 (2017)

    Article  Google Scholar 

  8. Richard, G., Escudié, D.: Turbulence effect on the flame-wall interaction. 1st Symp. (Int.) on Turb. and Shear Flow, 519–523. http://www.tsfp-conference.org/proceedings/1999/tsfp1-1999-84.pdf (1999)

  9. Mann, M., Jainski, C., Dreizler, A.: Spectroscopic Temperature and CO Concentration Measurements of Unsteady Wall Head-On Quenching Processes. In: European Combustion Meeting (2013)

    Google Scholar 

  10. Bohlin, A., Jainski, C., Patterson, B.D., Dreizler, A., Kliewer, C.J.: Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging. Proc. Combust. Inst. 36, 4557–4564 (2017)

    Article  Google Scholar 

  11. Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 183, 271–282 (2017)

    Article  Google Scholar 

  12. Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst. 36, 1827–1834 (2017)

    Article  Google Scholar 

  13. Bruneaux, G., Poinsot, T., Ferziger, J.H.: Premixed flame–wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)

    Article  MATH  Google Scholar 

  14. Angelberger, C., Poinsot, T., Delhay, B.: Improving Near-Wall combustion and wall heat transfer modeling in SI engine computations. SAE Technical Paper 972881 (1997)

  15. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Self-Publishing, Bordeaux (2012)

    Google Scholar 

  16. Alshaalan, T., Rutland, C.J.: Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol. 174, 135–165 (2002)

    Article  Google Scholar 

  17. Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)

    Article  MATH  Google Scholar 

  18. Cheng, R.K., Bill, R.G., Robben, F.: Experimental study of combustion in a turbulent boundary layer. Symp. (Int.) Combust. 18, 1021–1029 (1981)

    Article  Google Scholar 

  19. Ng, T.T., Cheng, R.K., Robben, F., Talbot, L.: Combustion-turbulence interaction in the turbulent boundary layer over a hot surface. Symp. (Int.) Combust. 19, 359–366 (1982)

    Article  Google Scholar 

  20. Gruber, A., Chen, J.H., Valiev, D., Law, C.K.: Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 709, 516–542 (2012)

    Article  MATH  Google Scholar 

  21. Heeger, C., Gordon, R.L., Tummers, M.J., Sattelmayer, T., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids 49, 853–863 (2010)

    Article  Google Scholar 

  22. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1988)

    Article  Google Scholar 

  23. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  24. Clark, G., Farrow, R.L.: The CARSFT Code. User and Programmer Information. Livermore, CA (1990)

  25. Nagano, Y., Tagawa, M., Tsuji, T.: Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J. (eds.) Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991, pp. 7–21. Springer, Berlin (1993)

    Chapter  Google Scholar 

  26. Hanjalić, K., Hadžić, I., Jakirlić, S.: Modeling turbulent wall flows subjected to strong pressure variations. J. Fluids Eng. 121, 57 (1999)

    Article  Google Scholar 

  27. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to R = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  28. Wallace, J.M., Eckelmann, H., Brodkey, R.S.: The wall region in turbulent shear flow. J. Fluid Mech. 54, 39–48 (1972)

    Article  Google Scholar 

  29. Willmarth, W.W., Lu, S.S.: Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65–92 (1972)

    Article  Google Scholar 

  30. Wallace, J.M.: Quadrant analysis in turbulence research. History and evolution. Annu. Rev. Fluid Mech. 48, 131–158 (2016)

    Article  MATH  Google Scholar 

  31. Corino, E.R., Brodkey, R.S.: A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 1–30 (1969)

    Article  Google Scholar 

  32. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  33. Chakraborty, N., Katragadda, M., Cant, R.S.: Statistics and modelling of turbulent kinetic energy transport in different regimes of premixed combustion. Flow Turbul. Combust. 87, 205–235 (2011)

    Article  MATH  Google Scholar 

  34. Cheng, R.K.: Conditional sampling of turbulence intensities and reynolds stress in premixed turbulent flames. Combust. Sci. Technol. 41, 109–142 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Deutsche Forschungsgemeinschaft through SFB/Transregio 150. Andreas Dreizler is very grateful for additional support through the Leibniz program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Jainski.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Funding

This study was funded by Deutsche Forschungsgemeinschaft (DFG) through SFB/Transregio 150. Andreas Dreizler is additionally supported through the DFG Leibniz program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jainski, C., Rißmann, M., Jakirlic, S. et al. Quenching of Premixed Flames at Cold Walls: Effects on the Local Flow Field. Flow Turbulence Combust 100, 177–196 (2018). https://doi.org/10.1007/s10494-017-9836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9836-8

Keywords

Navigation