Skip to main content
Log in

An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Blais, B., Lassaigne, M., Goniva, C., Fradette, L, Bertrand, F.: A semi-implicit immersed boundary method and its application to viscous mixing. Comput. Chem. Eng. 85, 136–146 (2016)

    Article  MATH  Google Scholar 

  2. Blades, E., Marcum, D.: A sliding interface method for unsteady unstructured flow simulations. AIAA, 2005–5233 (2005)

  3. Ferziger, J. H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer-Verlag, Berlin (2002)

  4. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peskin, C. S.: Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peskin, C. S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993)

    Article  MATH  Google Scholar 

  8. Peskin, C. S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. LeVeque, R., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.: Large eddy simulation in complex geometric configurations using boundary body forces. AIAA J. 38(3), 427–433 (2000)

    Article  Google Scholar 

  11. Mohd-Yusof, J.: Combined immersed-boundary/b-spline methods for simulations of flow in complex geometries. Center Turb Res Ann Res Briefs, 317–327 (1997)

  12. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput. Fluids 37(9), 1103–1125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johansen, H., Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147, 60–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. McCorquodale, P., Colella, P., Johansen, H.: A Cartesian grid embedded boundary method for the heat equation on irregular domains. J. Comput. Phys. 173, 620–635 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Udaykumar, H., Mittal, R., Shyy, W.: Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. J. Comput. Phys. 153(2), 535–574 (1999)

    Article  MATH  Google Scholar 

  16. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

    Article  MathSciNet  Google Scholar 

  17. Murman, S. M., Aftosmis, M. J., Berger, M. J.: Implicit approaches for moving boundaries in a 3-d Cartesian method. AIAA Paper, 2003–1119 (2003)

  18. Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56(3), 331–347 (2003)

    Article  Google Scholar 

  19. Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Comput. Fluids 102, 182–202 (2014)

    Article  Google Scholar 

  20. Hartmann, D., Meinke, M., Schröder, W.: Differential equation based constrained reinitialization for level set methods. J. Comput. Phys. 227(14), 6821–6845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartmann, D., Meinke, M., Schröder, W.: The constrained reinitialization equation for level set methods. J. Comput. Phys. 229(5), 1514–1535 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids 27(7), 075106 (2015)

    Article  Google Scholar 

  23. Pogorelov, A., Meinke, M., Schröder, W.: Effects of tip-gap width on the flow field in an axial fan. IntJ Heat Fluid Flow. doi:10.1016/j.ijheatfluidflow.2016.06.009 (2016)

  24. Pogorelov, A., Meinke, M., Schröder, W.: Impact of periodic boundary conditions on the flow field in an axial fan. AIAA Paper, 2016–0610 (2016)

  25. Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. You, D., Mittal, R., Wang, M., Moin, P.: Computational methodology for large-eddy simulation of tip-clearance flows. AIAA J. 42(2), 271–279 (2004)

    Article  Google Scholar 

  27. You, D., Wang, M., Moin, P., Mittal, R.: Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade. Phys. Fluids 18(10), 105102 (2006)

    Article  Google Scholar 

  28. You, D., Wang, M., Moin, P., Mittal, R.: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J. Fluid Mech. 586, 177–204 (2007)

    Article  MATH  Google Scholar 

  29. You, D., Wang, M., Moin, P., Mittal, R.: Vortex dynamics and low-pressure fluctuations in the tip-clearance flow. J. Fluids Eng. 129(8), 1002–1014 (2007)

    Article  Google Scholar 

  30. Tyagi, M., Acharya, S.: Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. Int. J. Numer. Methods Fluids 48, 691–722 (2005)

    Article  MATH  Google Scholar 

  31. Posa, A., Lippolis, A., Verzicco, R., Balaras, E.: Large-eddy simulations in mixed-flow pumps using an immersed-boundary method. Comput. Fluids 47, 33–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fadlun, E. A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hirt, C. W., Amsden, A. A., Cook, J. L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)

    Article  MATH  Google Scholar 

  34. Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36, 507–531 (1893)

    Article  MATH  Google Scholar 

  35. Udaykumar, H. S., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174(1), 345–380 (2001)

    Article  MATH  Google Scholar 

  36. Lintermann, A., Schlimpert, S., Grimmen, J. H., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on hpc systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)

    Article  MathSciNet  Google Scholar 

  37. Boris, J. P., Grinstein, F. F., Oran, E. S., Kolbe, R. L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6), 199–228 (1992)

    Article  Google Scholar 

  38. Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. Fluids 35 (10), 1126–1136 (2006)

    Article  MATH  Google Scholar 

  39. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulation. Comput. Fluids 31(4–7), 695–718 (2002)

    Article  MATH  Google Scholar 

  40. Renze, P., Schröder, W., Meinke, M.: Large-eddy simulation of film cooling flows at density gradients. Int. J. Heat Fluid Flow 29(1), 18–34 (2008)

    Article  MATH  Google Scholar 

  41. Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe. Phys. Fluids 17(3), 035107 (2005)

    Article  MATH  Google Scholar 

  42. Mavriplis, D. J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA, 2003–3986 (2003)

  43. Liou, M. -S., Steffen, C.J. Jr: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Berger, M. J., Aftosmis, M. J.: Progress towards a Cartesian cut-cell method for viscous compressible flow. AIAA, 2012–1301 (2012)

  45. Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200(9–12), 1038–1052 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jameson, A., Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA J. 24(4), 616–618 (1986)

    MATH  Google Scholar 

  47. Schneiders, L., Günther, C., Grimmen, J., Meinke, M., Schröder, W.: Sharp resolution of complex moving geometries using a multi-cut-cell viscous flow solver. AIAA Paper, 2015–3427 (2015)

  48. Sturm, M., Carolus, T.: Tonal fan noise of an isolated axial fan rotor due to inhomogeneous coherent structures at the intake. Noise Control Eng. J. 60(6), 699–706 (2012)

    Article  Google Scholar 

  49. Zhu, T., Carolus, T. H.: Experimental and numerical investigation of the tip clearance noise of an axial fan. In: Proceedings of ASME Turbo Expo 2013 (GT2013-94100). San Antonio (2013)

Download references

Acknowledgements

This study was funded under Grant No. 17747N (L238) by the German Federal Ministry of Economics and Technology via the ”Arbeitsgemeinschaft industrieller Forschungsvereinigungen Otto von Guericke e.V. ” (AiF) and the ”Forschungsvereinigung Luft- und Trocknungstechnik e.V.” (FLT). Computing resources were provided by the High Performance Computing Center Stuttgart (HLRS) and by the Jülich Supercomputing Center (JSC) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej Pogorelov.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogorelov, A., Schneiders, L., Meinke, M. et al. An Adaptive Cartesian Mesh Based Method to Simulate Turbulent Flows of Multiple Rotating Surfaces. Flow Turbulence Combust 100, 19–38 (2018). https://doi.org/10.1007/s10494-017-9827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9827-9

Keywords

Navigation