Skip to main content
Log in

Numerical Study of Ignition Process in Turbulent Shear-less Methane-air Mixing Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this work, ignition process in a turbulent shear-less methane-air mixing layer is numerically investigated. A compressible large eddy simulation method with Smagorinsky sub-grid scale model is used to solve the flow field. Also, a thickened flame combustion model and DRM-19 reduced mechanism are used to compute species distribution and the heat release. Non-reacting mean and RMS axial velocity profiles and mean mixture fraction are validated against experimental data. Instantaneous mixture fraction contours show that the large bursts penetrate from the fuel stream into that of the oxidizer and vice versa and a random behaviour in the cross-stream direction. Flame kernel initiation, growth and propagation are analysed and compared with the experimental data. The ignition results show that the flame is not stable and blow-off occurs, but a more detailed investigation shows that local and short time flame stabilization exist during blow-off. During these local stabilization, heat release increased at the upstream edge of the flame. Most_upstream flame edge scalar analysis shows that the methane mass fraction has a dominant role in the local flame stabilization. OH, HO2, CH2O and heat release contours demonstration reveal that HO2 and CH2O mass fraction as well as the heat release reach a maximum on the border of the flame, but the maximum OH concentration is located in the middle of flame kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Lacaze, G., Richardson, E., Poinsot, T.: Large eddy simulation of spark ignition in a turbulent methane jet. Combust. Flame 156, 1993–2009 (2009)

    Article  Google Scholar 

  2. Dreizler, A., Lindenmaier, S., Maas, U., Hult, J., Alden, M., Kaminsk, C.F.: Characterisation of a spark ignition system by planar laser-induced ?uorescence of OH at high repetition rates and comparison with chemical kinetic calculations. Appl. Phys. B 70, 287–294 (2000)

    Article  Google Scholar 

  3. Pastor, J.V., García-Oliver, J. M., García, A., Pinotti, M.: Laser induced plasma methodology for ignition control injection sprays. Energy Convers. Manag. 120, 144–156 (2016)

    Article  Google Scholar 

  4. Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, S., Kaminski, C.F.: Curvature and wrinkling of premixed flame kernels—comparisons of OH PLIF and DNS data. Proc. Combust. Instit. 30, 809–817 (2005)

    Article  Google Scholar 

  5. Mulla, I.A., Chakravarthy, S.R., Swaminathan, N., Balachandran, R.: Evolution of flame-kernel in laser-induced spark ignited mixtures: A parametric study. Combust. Flame 164, 303–318 (2016)

    Article  Google Scholar 

  6. Ahmed, S., Mastorakos, E.: Spark ignition of lifted turbulent jet flames. Combust. Flame 146, 215–231 (2006)

    Article  Google Scholar 

  7. Zhi, C., Shaohong, R., Nedunchezhian, S.: Numerical study of transient evolution of lifted jet flames: partially premixed flame propagation and influence of physical dimensions Combustion Theory and Modelling. doi:10.1080/13647830.2016.1161237 (2016)

  8. Ahmed, S., Balachandran, R., Marchione, T., Mastorakos, E.: Spark ignition of turbulent nonpremixed bluff-body flames. Combust. Flame 151, 366–385 (2007)

    Article  Google Scholar 

  9. Subramanian, V., Domingo, P., Vervisch, L.: Large eddy simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157, 579–601 (2010)

    Article  Google Scholar 

  10. Triantafyllidis, A., Mastorakos, E., Eggels, R.: Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure. Combust. Flame 156, 2328–2345 (2009)

    Article  Google Scholar 

  11. Eyssartier, A., Cuenot, B., Gicquel, L.Y., Poinsot, T.: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames. Combust. Flame 160, 1191–1207 (2013)

    Article  Google Scholar 

  12. Bourgouin, J.F., Durox, D., Schuller, T., Beaunier, J., Candela, S.: Ignition dynamics of an annular combustor equipped with multiple swirling injectors. Combust. Flame 160, 1398–1413 (2013)

    Article  Google Scholar 

  13. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154, 2–22 (2008)

    Article  Google Scholar 

  14. Mastorakos, E.: Ignition of turbulent non-premixed flames. Progress Energy Combust. Sci. 35, 57–97 (2009)

    Article  Google Scholar 

  15. Renard, P., Thevenin, D., Rolon, J., Candel, S.: Dynamics of flame/vortex interactions. Progress Energy Combust. Sci. 26, 225–282 (2000)

    Article  Google Scholar 

  16. Eichenberger, D., Roberts, W.: Effect of unsteady stretch on spark-ignited flame kernel survival. Combust. Flame 118, 469–478 (1999)

    Article  Google Scholar 

  17. Reddy, H., Abraham, J.: A numerical study of vortex interactions with flames developing from ignition kernels in lean methane/air mixtures. Combust. Flame 158, 401–415 (2011)

    Article  Google Scholar 

  18. Echekki, T., Kolera-Gokula, H.: A regime diagram for premixed flame kernel-vortex interactions, Physics of Fluids. doi:10.1063/1.2720595 (2007)

  19. Vasudeo, N., Echekki, T., Day, M.S., Bell, J.B.: The regime diagram for premixed flame kernel-vortex interactions—Revisited, Physics of Fluids. doi:10.1063/1.3372167 (2010)

  20. Kolera-Gokula, H., Echekki, T.: Direct numerical simulation of premixed flame kernel–vortex interactions in hydrogen–air mixtures. Combust. Flame 146, 155–167 (2006)

    Article  MATH  Google Scholar 

  21. Kolera-Gokula, H., Echekki, T.: The Mechanism of Unsteady Downstream Interactions of Premixed Hydrogen-Air Flames. Combust. Sci. Technol. 179, 2309–2334 (2007)

    Article  MATH  Google Scholar 

  22. Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment, Physics of Fluids. doi:10.1063/1.2196092 (2006)

  23. Liao, S., Jiang, D., Cheng, Q., Gao, J., Huang, Z., Hu, Y.: Correlations for laminar burning velocities of liquefied petroleum gas–air mixtures. Energy Convers. Manag. 46, 3175–3184 (2005)

    Article  Google Scholar 

  24. Sjeric, M., Kozarac, D., Tatschl, R.: Modelling of early flame kernel growth towards a better understanding of cyclic combustion variability in SI engines. Energy Convers. Manag. 103, 895–909 (2015)

    Article  Google Scholar 

  25. Veeravalli, S., Warhaft, Z.: The shearless turbulence mixing layer. J. Fluid Mech. 207, 191–229 (1989)

    Article  Google Scholar 

  26. Mydlarski, L., Warhaft, Z.: On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)

    Article  Google Scholar 

  27. Gerashchenko, S., Goodand, G., Warhaft, Z.: Entrainment and mixing of water droplets across a shearless turbulent interface with and without gravitational effects. J. Fluid Mech. 668, 293–303 (2011)

    Article  MATH  Google Scholar 

  28. Gerashchenko, S., Warhaft, Z.: Conditional entrainment statistics of inertial particles across shearless turbulent interfaces. Exp. Fluids 54, (2013). doi:10.1007/s00348-013-1631-2

  29. Good, G.H., Gerashchenko, S., Warhaft, Z.: Intermittency and inertial particle entrainment at a turbulent interface: the effect of the largescale eddies. J. Fluid Mech. 694, 371–398 (2012)

    Article  MATH  Google Scholar 

  30. Ireland, P.J., Collins, L.R.: Direct numerical simulation of inertial particle entrainment in a shearless mixing layer. J. Fluid Mech. 704, 301–332 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Iovieno, M., Savino, S.D., Gallana, L., Tordella, D.: Mixing of a passive scalar across a thin shearless layer: concentration of intermittency on the sides of the turbulent interface. J. Turbul. 15, 311–334 (2014)

    Article  MathSciNet  Google Scholar 

  32. Fathali, M., Deshiri, M.K.: Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale, Physical Review E. doi:10.1103/PhysRevE.93.043122 (2016)

  33. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)

    Article  Google Scholar 

  34. Ma, B., Warhaft, Z.: Some aspects of the thermal mixing layer in grid turbulence, Physics of Fluids. doi:10.1063/1.865962 (1986)

  35. Ahmed, S.F., Mastorakos, E.: Spark ignition of a turbulent shear-less fuel–air mixing layer. Fuel 164, 297–304 (2016)

    Article  Google Scholar 

  36. Sforzo, B., Kim, J., Jagoda, J., Seitzman, J.: Ignition probability in a stratified turbulent flow with a sunken fire igniter. J. Eng. Gas Turbines Power 137, (2015). doi:10.1115/1.4028208

  37. Sforzo, B., Dao, H., Wei, S., Seitzman, J.: Liquid fuel composition effects on forced, nonpremixed ignition. J. Eng. Gas Turbines Power 139, (2017). doi:10.1115/1.4034502

  38. Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 2nd edn. Edwards, Philadelphia, USA

  39. Pope, S.B.: Turbulent flows. Cambridge Univesity Press, Cambridge, UK (2000)

  40. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  41. Kazakov, A., Frenklach, M.: http://www.me.berkeley.edu/drm/, [Online]

  42. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion Physics of Fluids. doi:10.1063/1.870436 (2000)

  43. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998)

    Article  Google Scholar 

  44. Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  45. Kornev, N., Hassel, E.: Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun. Numer. Methods Eng. 23, 35–43 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Clavin, P., Williams, F.A.: Effects of moleculare diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251–282 (1982)

    Article  MATH  Google Scholar 

  47. Peters, N.: Turbulent combustion. Cambridge University Press, UK (2000)

    Book  MATH  Google Scholar 

  48. Turns, S.R. An introduction to combustion, concepts and applications,: 2nd edn. McGraw-Hill, (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Tabejamaat.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EidiAttarZade, M., Tabejamaat, S., Mani, M. et al. Numerical Study of Ignition Process in Turbulent Shear-less Methane-air Mixing Layer. Flow Turbulence Combust 99, 411–436 (2017). https://doi.org/10.1007/s10494-017-9818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9818-x

Keywords

Navigation