Skip to main content

Large Eddy Simulation of aTurbulent Diffusion Flame: Some Aspects of Subgrid Modelling Consistency

Abstract

In the context of Large Eddy Simulation (LES) solely for the momentum transport equation there may be found several models for the turbulent subgrid fluxes. Furthermore, among those relying on the eddy diffusivity approach, each model may be based on different invariants of the strain rate. Besides, when heat and mass transfer are also considered, closures for the subgrid turbulent scalar fluxes are also required. Hence, different model combinations may be considered. Additionally, when other physical phenomena are included, such as combustion, further subgrid modelling is involved. Therefore, in the present study a LES simulation of a turbulent diffusion flame is performed and different combination of subgrid models are used in order to analyse the numerical effects in the simulations. Several models for the turbulent momentum subgrid fluxes are considered, both constant and dynamically evaluated Schmidt numbers. Regarding combustion, in the context of the Flamelet/Progress-Variable (FPV) model, with an assumed probability density function for the turbulent-chemistry interactions and four different closures for the subgrid mixture fraction variance are considered. Hence, a large number of model combinations are possible. The present study highlights the need for a consistent closure of subgrid effects. It is shown that, in the context of an FPV modelling, incorrect capture of subgrid mixing results in a flame lift-off for the studied flame (DLR A diffusion flame), even though experimentally an attached flame was reported. It is found that a consistent formulation is required, that is, all subgrid closures should become active in the same regions of the domain to avoid modelling inconsistencies. In contrast, when the classical flamelet approach is used, no lift-off is observed. The reason is that the classical flamelet includes only a limited subset of the possible flame states, i.e. only includes burning flamelets and extinguished flamelets for scalar dissipation rates past the extinction one.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale Eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  2. Lilly, D.: A proposed modification of the germano subgrid-scale closure method. Phys. Fluids 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  3. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. An Introduction. Springer-Verlag (1980)

  4. Smagorinsky, J.: General circulation experiments with the primitive equations: 1. the basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  5. Moin, P., Squires, W., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 3(11), 2746–2757 (1991)

    Article  MATH  Google Scholar 

  6. Peters, N.: Turbulent Combustion. Cambridge University Press (2000)

  7. Pierce, C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pierce, C., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 2. Application in LES of Sandia flames D and E. Combust. Flame 155(1-2), 90–107 (2008)

    Article  Google Scholar 

  10. Kaul, C., Raman, V., Knudsen, E., Richardson, E., Chen, J.: Large Eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate. Proc. Combust. Inst. 34(1), 1289–1297 (2013)

    Article  Google Scholar 

  11. Knudsen, E., Richardson, E., Doran, E., Pitsch, N., Chen, J.: Modeling scalar dissipation and scalar variance in large Eddy simulation: Algebraic and transport equation closures. Phys. Fluids 24(055), 103 (2012)

    Google Scholar 

  12. Bergmann, V., Meier, W., Wolff, D., Stricker, W.: Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl. Phys. B-Lasers O. 66, 489–502 (1998)

    Article  Google Scholar 

  13. Meier, W., Barlow, R., Chen, Y. L., Chen, J. Y.: Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: Experimental techniques and turbulence-chemistry interaction. Combust. Flame 123, 326–343 (2000)

    Article  Google Scholar 

  14. Kempf, A., Schneider, C., Sadiki, A., Janicka, J.: Large Eddy simulation of a highly turbulent methane flame: application to the dlr standard flame International Symposium on Turbulence and Shear Flow Phenomena. TSFP DIGITAL LIBRARY ONLINE, Stockholm, Sweden (2001)

    Google Scholar 

  15. Pitsch, H.: Unsteady flamelet modelling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358–374 (2000)

    Article  Google Scholar 

  16. Emami, M., Eshghinejad Fard, A.: Laminar flamelet modeling of a turbulent CH4/H2/N2 jet diffusion flame using artificial neural networks. Appl. Math. Model. 36 (5), 2082–2093 (2012)

    Article  Google Scholar 

  17. Lindstedt, R., Ozarovsky, H.: Joint scalar transported pdf modeling of nonpiloted turbulent diffusion flames. Combust. Flame 143, 471–490 (2005)

    Article  Google Scholar 

  18. Vogiatzaki, K., Kronenburg, A., Cleary, M., Kent, J.: Multiple mapping conditioning of turbulent jet diffusion flames. Proc. Combust. Inst. 32(2), 1679–1685 (2009)

    Article  MATH  Google Scholar 

  19. Wang, H., Pope, S.: Large Eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)

    Article  Google Scholar 

  20. Fairweather, M., Woolley, R.: First-order conditional moment closure modeling of turbulent, nonpremixed methane flames. Combust. Flame 138, 3–19 (2004)

    Article  Google Scholar 

  21. Lee, K. W., Choi, D. H.: Prediction of NO in turbulent diffusion flames using eulerian particle flamelet model. Combust. Theor. Model. 12(5), 905–927 (2008)

    Article  MATH  Google Scholar 

  22. Lee, K. W., Choi, D. H.: Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model. Int. J. Heat Mass Tran. 52(5-6), 1412–1420 (2009)

    Article  MATH  Google Scholar 

  23. Ihme, M.: Pollutant Formation and Noise Emission in Turbulent Non-Premixed Flames. Ph.D. Thesis, Standford University, Stanford (2007)

  24. Ihme, M., Pitsch, H., Bodony, D.: Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32(1), 1545–1553 (2009)

    Article  Google Scholar 

  25. Kemenov, K. A., Pope, S.: Molecular diffusion effects in LES of a piloted methane-air flame. Combust. Flame 158(2), 240–254 (2011)

    Article  Google Scholar 

  26. Kemenov, K. A., Wang, H., Pope, S.: Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame. Combust. Theor. Model. 16(4), 611–638 (2012)

    Article  Google Scholar 

  27. Pope, S.: Turbulent flows. Cambridge University Press (2000)

  28. Nicoud, F., Ducros, F.: Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  29. Verstappen, R., Meyers, J.: When does Eddy viscosity damp subfilter scales sufficiently? In: Salvetti, M.V., Geurts, B., Sagaut, P. (eds.) Quality and Reliability of Large-Eddy Simulations II, volume 16 of Ercoftac Series, vol. 16, pp 421–430 (2010)

  30. Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114, 26–40 (1998)

    Article  Google Scholar 

  31. Bowman, C., Frenklach, M., Smith, G., Gardiner, B., et al.: http://www.me.berkeley.edu/gri-mech/releases.html (2012)

  32. Jiménez, C., Ducros, F., Cuenot, B., Bédat, B.: Subgrid scale variance and dissipation of a scalar field in large Eddy simulations. Phys. Fluids 13(6), 1748 (2001)

    Article  MATH  Google Scholar 

  33. Kaul, C., Raman, V. G. B. H. P.: Numerical errors in the computation of subfilter scalar variance in large Eddy simulations. Phys. Fluids 21(55), 102 (2009)

    MATH  Google Scholar 

  34. Balarac, G., Pitsch, H., Raman, V.: Modeling of the subfilter scalar dissipation rate using the concept of optimal estimators. Phys. Fluids 20(91), 701 (2008)

    MATH  Google Scholar 

  35. Balarac, G., Pitsch, H., Raman, V.: Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids 20(35), 114 (2008)

    MATH  Google Scholar 

  36. Verstappen, R., Veldman, A.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187, 343–368 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Darwish, M. S., Moukalled, F. H.: NorMalized variable and space formulation methodology for high-resolution schemes. Numer. Heat Tr. B-Fund. 26, 76–96 (1994)

    Article  Google Scholar 

  38. Borrell, R., Lehmkuhl, O., Trias, F., Oyarzún, G., Oliva, A.: FFT-based Poisson Solver for large scale numerical simulations of incompressible flows Proceedings of the 23rd Parallel Computational Fluid Dynamics (2011)

    Google Scholar 

  39. Lehmkuhl, O., Pérez Segarra, C., Borrell, R., Soria, M., Oliva, A.: Termofluids: A new parallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC cluster Proceedings of the Par. CFD Conference, pp 1–8 (2007)

    Google Scholar 

  40. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135 (1–2), 185–190 (2003)

    Article  Google Scholar 

  41. http://www.sandia.gov/TNF/DataArch/DLRflames.html (2012)

  42. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  MATH  Google Scholar 

  43. di Mare, L., Klein, M., Jones, W. P., Janicka, J.: Synthetic turbulence inflow conditions for large-eddy simulation 18(2) (2006)

  44. Lehmkuhl, O., Rodríguez, I., Baez, A., Oliva, A., Pérez-segarra, C.: On the large-eddy simulations for the flow around aerodynamic profiles using unstructured grids. Combust. Flame 84, 176–189 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. J. Fluid Mech 118, 341–377 (1982)

    Article  MATH  Google Scholar 

  46. Pitsch, H., Ihme, M.: An Unsteady Flamelet/Progress Variable Method for LES of Nonpremixed Turbulent Combustion Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005)

    Google Scholar 

  47. Clemens, N., Paul, P.: Effects of heat release on the near field flow structure of hydrogen jet diffusion flames. Combust. Flame 102(3), 271–284 (1995)

    Article  Google Scholar 

  48. Mueller, M., Pitsch, H.: LES model for sooting turbulent nonpremixed flames. Combust. Flame 159(6), 2166–2180 (2012)

    Article  Google Scholar 

  49. Yoshizawa, A., Horiuti, K.: A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been financially supported by the Ministerio de Economía y Competitividad of the Spanish government through project ENE2014-60577-R. We would also like to thank the reviewers for their helpful comments which have led to an improved article. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Ventosa-Molina or A. Oliva.

Appendix A

Appendix A

1.1 Subgrid Kinetic Energy Modelling

The VTE and STE subgrid mixing models are closed using a turbulent mixing time-scale. It has been argued that when an Smagorinsky-like turbulence model is used, closure for the subgrid dissipation and subgrid kinetic energy is consistent. However, when another model based on different invariants is used an inconsistency appears, such as in the WALE model. In the following an analysis of subgrid dissipation and subgrid kinetic energy modelling is developed for the WALE model, but an analogous process can be performed for any other subgrid viscosity model.

Modelling the relation between subgrid dissipation and subgrid kinetic energy [27] as

$$ \varepsilon_{sgs} = C_{\varepsilon} \frac{k_{sgs}^{3/2}}{l_{m}} = C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta} $$
(21)

where l m represents the mixing length, which is taken to be the grid size Δ. Yoshizawa and Horiuti [49] suggest a value for the constant of C ε = 1.8. The subgrid dissipation is

$$ \varepsilon_{sgs} = \widetilde{\tau}_{ij} \widetilde{S}_{ij} = 2 \nu_{t} \widetilde{S}_{ij} \widetilde{S}_{ij} $$
(22)

with \(\widetilde {S}_{ij} = \frac {1}{2} \left (\frac {\partial \widetilde {u}_{i}}{\partial x_{j}}+\frac {\partial \widetilde {u}_{j}}{\partial x_{i}} \right )\). Combining the last two equations and introducing \(|\widetilde {S}| = \sqrt {2 \widetilde {S}_{ij}\widetilde {S}_{ij}}\)

$$ \nu_{t} |\widetilde{S}|^{2} = C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta} $$
(23)

In the following, subgrid kinetic energy is modelled as

$$ k= 2 C_{k} {\Delta}^{2} \widetilde{S}_{ij} \widetilde{S}_{ij} = C_{k} {\Delta}^{2} |\widetilde{S}|^{2} $$
(24)

where C k is a model constant. For Smagorinsky-like subgrid viscosity models this is a constant value. However, for models based on invariants different than the strain, it is shown that this is not a true constant. Introducing (24) into (23) results in

$$\begin{array}{@{}rcl@{}} \nu_{t} |\widetilde{S}|^{2} &=& \frac{C_{\varepsilon}}{\Delta} \Bigl(C_{k} {\Delta}^{2} |\widetilde{S}|^{2} \Bigr)^{3/2} \\ \nu_{t} &=& C_{\varepsilon} (C_{k})^{3/2} {\Delta}^{2} |\widetilde{S}| \end{array} $$
(25)

Thus, next it is analysed the relation between the turbulent viscosity constant and the subgrid kinetic energy constant.

1.1.1 Smagorinsky-like subgrid viscosity

Beginning with the Smagorinsky model [4], the turbulent viscosity is

$$ \nu_{t} = {C_{s}^{2}} {\Delta}^{2} |\widetilde{S}| $$
(26)

Combining the latter with (25) results in

$$\begin{array}{@{}rcl@{}} {C_{s}^{2}} {\Delta}^{2} |S| &=& C_{\varepsilon} C_{k}^{3/2} {\Delta}^{2} |S| \\ {C_{s}^{2}} &=& C_{\varepsilon} C_{k}^{3/2} \end{array} $$
(27)

Hence, when the Smagorinsky model is used, the turbulent kinetic energy model constant (24) is a true constant. Consequently, subgrid dissipation and subgrid kinetic energy are modelled consistently.

1.1.2 WALE subgrid viscosity

Considering the WALE model [28], the turbulent viscosity is evaluated as

$$ \nu_{t} = {C_{w}^{2}} {\Delta}^{2} S_{d} $$
(28)

where S d represents the operator of the WALE model

$$ S_{d} = \frac{\left( \mathcal{V}_{ij}\mathcal{V}_{ij}\right)^{3/2}}{\left( \widetilde{S}_{ij}\widetilde{S}_{ij} \right)^{5/2}+\left( \mathcal{V}_{ij}\mathcal{V}_{ij}\right)^{5/4}} $$
(29)

with

$$\mathcal{V}_{ij} = \frac{1}{2}\left( \left( \frac{\partial \widetilde{u}_{i}}{\partial x_{j}}\right)^{2}+ \left( \frac{\partial \widetilde{u}_{j}}{\partial x_{i}}\right)^{2} \right) - \frac{1}{3}\delta_{ij}\left( \frac{\partial \widetilde{u}_{k}}{\partial x_{k}}^{2} \right)^{2} $$

Introducing (28) into (25) yields

$$\begin{array}{@{}rcl@{}} {C_{w}^{2}} {\Delta}^{2} S_{d} &=& C_{\varepsilon} C_{k}^{3/2} {\Delta}^{2} |\widetilde{S}| \\ {C_{w}^{2}} S_{d} &=& C_{\varepsilon} C_{k}^{3/2} |\widetilde{S}| \end{array} $$
(30)

showing that the model constant for the subgrid kinetic energy should take into account the strain \(|\widetilde {S}|\) and the operator used by the WALE model. Thus, the model constant in this case is

$$ C_{k}^{3/2} = \frac{{C_{w}^{2}}}{C_{\varepsilon}} \frac{S_{d}}{|\widetilde{S}|} $$
(31)

Consequently, if C k is set to a specific value, a true constant, when the subgrid turbulent fluxes are modelled using the WALE model, there is a mismatch in (21). As a results, the modelling inconsistency previously described appears.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ventosa-Molina, J., Lehmkuhl, O., Pérez-Segarra, C.D. et al. Large Eddy Simulation of aTurbulent Diffusion Flame: Some Aspects of Subgrid Modelling Consistency. Flow Turbulence Combust 99, 209–238 (2017). https://doi.org/10.1007/s10494-017-9813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9813-2

Keywords

  • Turbulent diffusion flame
  • Mixture fraction variance
  • Subgrid scalar dissipation rate
  • Flamelet/progress-variable
  • Turbulence modelling