Skip to main content

Flame Quenching at Walls: A Source of Sound Generation

Abstract

This paper presents a numerical study of head on quenching (HOQ) (an extreme case of flame/wall interactions) as a source of sound generation, which in turn can trigger combustion instabilities and enhanced noise levels. High-fidelity numerical simulations are performed to investigate the impact of wall temperature, high chamber pressures and Lewis number of the fuel on the noise generation. It is demonstrated by theory and simulations that the underlying mechanism of sound generation is flame surface destruction (flame annihilation). Special emphasis is put on chemical modeling where simple and complex mechanisms were compared: it is shown that simple chemistry simulations overestimate the generated pressure peaks due to a too fast extinction of the heat release rate compared to the complex scheme. In contrast to the simple mechanism, the complex scheme accounts for minor and intermediate species production and destruction which slows down the extinction process and thus lead to a lower sound level. This effect has to be taken into account, especially in the context of Large Eddy Simulation (LES) of combustion instabilities and combustion noise where simple chemical descriptions are often employed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015). doi:10.1016/j.proci.2014.08.014

    Article  Google Scholar 

  2. Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.: Turbulent flame–wall interaction: A direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010). doi:10.1017/S0022112010001278

    Article  MATH  Google Scholar 

  3. Hocks, W., Peters, N., Adomeit, G.: Flame quenching in front of a cold wall under two-step kinetics. Combust. Flame 41, 81–99 (1981). doi:10.1016/0010-2180(81)90049-3

    Article  Google Scholar 

  4. Wichman, I., Bruneaux, G.: Head on quenching of a premixed flame by a cold wall. Combust. Flame 103(4), 296–310 (1995). doi:10.1016/0010-2180(95)00100-X

    Article  Google Scholar 

  5. Xavier, P., Ghani, A., Mejia, D., Miguel-Brebion, M., Bauerheim, M., Selle, L., Poinsot, T.: Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall. J. Fluid Mech. 813, 127–151 (2017)

    MathSciNet  Article  Google Scholar 

  6. Lieuwen, T.: Unsteady Combustor Physics. Cambridge University Press (2012)

  7. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn, (www.cerfacs.fr/elearning) (2011)

  8. Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.: Flame-wall interaction in a turbulent channel flow. Combust. Flame 107(1/2), 27–44 (1996). doi:10.1016/0010-2180(95)00263-4

    Article  Google Scholar 

  9. Popp, P., Baum, M.: An analysis of wall heat fluxes, reaction mechanisms and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108(3), 327–348 (1997). doi:10.1016/S0010-2180(96)00144-7

    Article  Google Scholar 

  10. Westbrook, C.K., Adamczyk, A.A., Lavoie, G.A.: A numerical study of laminar flame wall quenching. Combust. Flame 40, 81–99 (1981). doi:10.1016/0010-2180(81)90112-7

    Article  Google Scholar 

  11. Ihme, M.: Combustion and engine-core noise. Ann. Rev. Fluid Mech 49, 277–310 (2017). doi:10.1146/annurev-fluid-122414-034542

    Article  MATH  Google Scholar 

  12. Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for Large-Eddy Simulation of kerosene-air flames. Combust. Flame 157(7), 1364–1373 (2010). doi:10.1016/j.combustflame.2010.03.014

    Article  Google Scholar 

  13. Ghani, A., Poinsot, T., Gicquel, L., Staffelbach, G.: Les of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)

    Article  Google Scholar 

  14. Hermeth, S., Staffelbach, G., Gicquel, L., Poinsot, T.: LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34(2), 3165–3173 (2013). doi:10.1016/j.proci.2012.07.013. http://www.sciencedirect.com/science/article/pii/S1540748912003045

    Article  Google Scholar 

  15. Ghani, A., Gicquel, L., Poinsot, T.: Acoustic analysis of a liquid fuel swirl combustor using dynamic mode decomposition. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, pp. 1–9. American Society of Mechanical Engineers (2015)

  16. Ghani, A., Poinsot, T., Gicquel, L., Müller, J.D.: Les study of transverse acoustic instabilities in a swirled kerosene/air combustion chamber. Flow Turb. Combust. 96(1), 207–226 (2016)

    Article  Google Scholar 

  17. Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194–218 (2011). doi:10.1017/jfm.2011.131

    MathSciNet  Article  MATH  Google Scholar 

  18. Brear, M.J., Nicoud, F., Talei, M., Giauque, A., Hawkes, E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 53–73 (2012). doi:10.1017/jfm.2012.264

    MathSciNet  Article  MATH  Google Scholar 

  19. Candel, S., Durox, D., Schuller, T.: Flame interactions as a source of noise and combustion instabilities. In: 10th AIAA/CEAS Aeroacoustics Conference - AIAA 2004-2928, pp. 1444–1454 (2004)

  20. Blanchard, M., Schmid, P. J., D.S., Schuller, T.: Pressure wave generation from perturbed premixed flames. J. Fluid Mech. 797, 231–246 (2016). doi:10.1017/jfm.2016.268

    MathSciNet  Article  Google Scholar 

  21. Strahle, W.C.: On combustion generated noise. J. Fluid Mech. 49, 399–414 (1971). doi:10.1017/S0022112071002167

    Article  MATH  Google Scholar 

  22. Swaminathan, N., Xu, G., Dowling, a.P., Balachandran, R.: Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80–115 (2011). doi:10.1017/jfm.2011.232

    MathSciNet  Article  MATH  Google Scholar 

  23. Lighthill, M.J.: On sound generated aerodynamically: I. general theory. Proc. R. Soc. Lond 211(1107), 564–587 (1952). doi:10.1098/rspa.1952.0060

    MathSciNet  Article  MATH  Google Scholar 

  24. Crighton, D.G., Dowling, A.P., Williams, J.E.F., Heckl, M., Leppington, F.: Modern Methods in Analytical Acoustics, Lecture Notes, vol. 1sd ed. Springer Verlag, New-York (1992)

    Book  Google Scholar 

  25. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000). doi:10.1063/1.870436

    Article  MATH  Google Scholar 

  26. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992). doi:10.1016/0021-9991(92)90046-2

    MathSciNet  Article  MATH  Google Scholar 

  27. Lu, T., Law, C.K.: A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154, 761–774 (2008). doi:10.1016/j.combustflame.2008.04.025

    Article  Google Scholar 

  28. Bodenstein, M.: Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem. 85(329), 0022–3654 (1913)

    MATH  Google Scholar 

  29. Warnatz, J.: The mechanism of high temperature combustion of propane and butane. Combust. Sci. Tech. 34, 177 (1983). doi:10.1080/00102208308923692

    Article  Google Scholar 

  30. Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames. Combust. Flame 138(3), 242–258 (2004). doi:10.1016/j.combustflame.2004.04.010

    Article  Google Scholar 

  31. Dinkelacker, F., Manickam, B., Muppala, S.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective lewis number approach. Combust. Flame 158, 1742–1749 (2011). doi:10.1016/j.combustflame.2010.12.003

    Article  Google Scholar 

  32. Jimenez, C., Haghiri, A., Brear, M.J., Talei, M., Hawkes, E.: Sound generation by premixed flame annihilation with full and simple chemistry. Proc. Combust. Inst. 35, 3317–3325 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement ERC-AdG 319067-INTECOCIS. This work was granted access to the high-performance computing resources of IDRIS under the allocation x20162b7036 made by GENCI. Cerfacs is greatly acknowledged for their support on the AVBP code. A.G. would like to thank O. Schulz, Dr. P. Xavier and Dr. C. Kraus for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulla Ghani.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghani, A., Poinsot, T. Flame Quenching at Walls: A Source of Sound Generation. Flow Turbulence Combust 99, 173–184 (2017). https://doi.org/10.1007/s10494-017-9810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9810-5

Keywords

  • Head on quenching
  • Noise generation
  • Chemistry modeling