Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015). doi:10.1016/j.proci.2014.08.014
Article
Google Scholar
Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.: Turbulent flame–wall interaction: A direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010). doi:10.1017/S0022112010001278
Article
MATH
Google Scholar
Hocks, W., Peters, N., Adomeit, G.: Flame quenching in front of a cold wall under two-step kinetics. Combust. Flame 41, 81–99 (1981). doi:10.1016/0010-2180(81)90049-3
Article
Google Scholar
Wichman, I., Bruneaux, G.: Head on quenching of a premixed flame by a cold wall. Combust. Flame 103(4), 296–310 (1995). doi:10.1016/0010-2180(95)00100-X
Article
Google Scholar
Xavier, P., Ghani, A., Mejia, D., Miguel-Brebion, M., Bauerheim, M., Selle, L., Poinsot, T.: Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall. J. Fluid Mech. 813, 127–151 (2017)
MathSciNet
Article
Google Scholar
Lieuwen, T.: Unsteady Combustor Physics. Cambridge University Press (2012)
Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn, (www.cerfacs.fr/elearning) (2011)
Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.: Flame-wall interaction in a turbulent channel flow. Combust. Flame 107(1/2), 27–44 (1996). doi:10.1016/0010-2180(95)00263-4
Article
Google Scholar
Popp, P., Baum, M.: An analysis of wall heat fluxes, reaction mechanisms and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108(3), 327–348 (1997). doi:10.1016/S0010-2180(96)00144-7
Article
Google Scholar
Westbrook, C.K., Adamczyk, A.A., Lavoie, G.A.: A numerical study of laminar flame wall quenching. Combust. Flame 40, 81–99 (1981). doi:10.1016/0010-2180(81)90112-7
Article
Google Scholar
Ihme, M.: Combustion and engine-core noise. Ann. Rev. Fluid Mech 49, 277–310 (2017). doi:10.1146/annurev-fluid-122414-034542
Article
MATH
Google Scholar
Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for Large-Eddy Simulation of kerosene-air flames. Combust. Flame 157(7), 1364–1373 (2010). doi:10.1016/j.combustflame.2010.03.014
Article
Google Scholar
Ghani, A., Poinsot, T., Gicquel, L., Staffelbach, G.: Les of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)
Article
Google Scholar
Hermeth, S., Staffelbach, G., Gicquel, L., Poinsot, T.: LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34(2), 3165–3173 (2013). doi:10.1016/j.proci.2012.07.013. http://www.sciencedirect.com/science/article/pii/S1540748912003045
Article
Google Scholar
Ghani, A., Gicquel, L., Poinsot, T.: Acoustic analysis of a liquid fuel swirl combustor using dynamic mode decomposition. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, pp. 1–9. American Society of Mechanical Engineers (2015)
Ghani, A., Poinsot, T., Gicquel, L., Müller, J.D.: Les study of transverse acoustic instabilities in a swirled kerosene/air combustion chamber. Flow Turb. Combust. 96(1), 207–226 (2016)
Article
Google Scholar
Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194–218 (2011). doi:10.1017/jfm.2011.131
MathSciNet
Article
MATH
Google Scholar
Brear, M.J., Nicoud, F., Talei, M., Giauque, A., Hawkes, E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 53–73 (2012). doi:10.1017/jfm.2012.264
MathSciNet
Article
MATH
Google Scholar
Candel, S., Durox, D., Schuller, T.: Flame interactions as a source of noise and combustion instabilities. In: 10th AIAA/CEAS Aeroacoustics Conference - AIAA 2004-2928, pp. 1444–1454 (2004)
Blanchard, M., Schmid, P. J., D.S., Schuller, T.: Pressure wave generation from perturbed premixed flames. J. Fluid Mech. 797, 231–246 (2016). doi:10.1017/jfm.2016.268
MathSciNet
Article
Google Scholar
Strahle, W.C.: On combustion generated noise. J. Fluid Mech. 49, 399–414 (1971). doi:10.1017/S0022112071002167
Article
MATH
Google Scholar
Swaminathan, N., Xu, G., Dowling, a.P., Balachandran, R.: Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80–115 (2011). doi:10.1017/jfm.2011.232
MathSciNet
Article
MATH
Google Scholar
Lighthill, M.J.: On sound generated aerodynamically: I. general theory. Proc. R. Soc. Lond 211(1107), 564–587 (1952). doi:10.1098/rspa.1952.0060
MathSciNet
Article
MATH
Google Scholar
Crighton, D.G., Dowling, A.P., Williams, J.E.F., Heckl, M., Leppington, F.: Modern Methods in Analytical Acoustics, Lecture Notes, vol. 1sd ed. Springer Verlag, New-York (1992)
Book
Google Scholar
Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000). doi:10.1063/1.870436
Article
MATH
Google Scholar
Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992). doi:10.1016/0021-9991(92)90046-2
MathSciNet
Article
MATH
Google Scholar
Lu, T., Law, C.K.: A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154, 761–774 (2008). doi:10.1016/j.combustflame.2008.04.025
Article
Google Scholar
Bodenstein, M.: Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem. 85(329), 0022–3654 (1913)
MATH
Google Scholar
Warnatz, J.: The mechanism of high temperature combustion of propane and butane. Combust. Sci. Tech. 34, 177 (1983). doi:10.1080/00102208308923692
Article
Google Scholar
Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames. Combust. Flame 138(3), 242–258 (2004). doi:10.1016/j.combustflame.2004.04.010
Article
Google Scholar
Dinkelacker, F., Manickam, B., Muppala, S.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective lewis number approach. Combust. Flame 158, 1742–1749 (2011). doi:10.1016/j.combustflame.2010.12.003
Article
Google Scholar
Jimenez, C., Haghiri, A., Brear, M.J., Talei, M., Hawkes, E.: Sound generation by premixed flame annihilation with full and simple chemistry. Proc. Combust. Inst. 35, 3317–3325 (2015)
Article
Google Scholar