Skip to main content
Log in

Effect of Nozzle Exit Turbulence on the Column Trajectory and Breakup Location of a Transverse Liquid Jet in a Gaseous Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This study examines the effect of fully developed turbulent flow at the exit of nozzle/injector on the trajectory and column breakup location of a liquid jet injected transverly into a gaseous crossflow. Liquid jet trajectory and column breakup for different nozzle geometries at different velocities of liquid jet and crossflow are analytically and experimentally Investigated. Shadowgraph imaging technique is used to determine the jet trajectory and breakup location of a transverse liquid jet in a uniform airflow. Particle image velocimetry (PIV) is used to measure the near-field velocity profile of a liquid jet discgarged into a quiescent atmosphere. The experimental results show a higher penetration and breakup height for the liquid jet ensuing from a nozzle with a smaller length to diameter ratio. This is due to the surface irregularities of the liquid column of a turbulent jet, which breaks up and consequently follows the cross airflow sooner. In order to capture the effect of turbulence, the analytical trajectory correlation developed in our previous studies is modified to account for the discharge coefficient of a nozzle. The discharge coefficient is estimated indirectly by comparing the liquid column trajectory predicted by the modified analytical correlation with that determined experimentally. The indirectly determined discharge coefficient is then used in the analytical correlation for predicting the breakup height of a transverse liquid jet. The results predicted using this approach are in good agreement with the experimental data of the present study at standard temperature and pressure (STP) test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ashgriz, N.: Handbook of Atomization and Sprays. Springer Science Business Media LLC, pp 657–683 (2011)

  2. Karagozian, A. R.: Transverse jets and their control. Prog. Energy Combust. Sci. 36(5), 531–553 (2010)

    Article  Google Scholar 

  3. Desantes, J. M., Arrègle, J., López, J. J., García, J. M.: Turbulent gas jets and diesel-like sprays in a crossflow: A study on axis deflection and air entrainment. Fuel 85(14–15), 2120–2132 (2006)

    Article  Google Scholar 

  4. Padala, S., Le, M. K., Kook, S., Hawkes, E. R.: Imaging diagnostics of ethanol port fuel injection sprays for automobile engine applications. Appl. Therm. Eng. 52(1), 24–37 (2013)

    Article  Google Scholar 

  5. Birouk, M., Azzopardi, B. J., Stäbler, T.: Primary Break-up of a Viscous Liquid Jet in a Cross Airflow. Part. Part. Syst. Charact. 20(4), 283–289 (2003)

    Article  Google Scholar 

  6. Birouk, M., Stäbler, T., Azzopardi, B. J.: An experimental study of liquid jets interacting with cross airflows. Part. Part. Syst. Charact. 20, 39–46 (2003)

    Article  Google Scholar 

  7. Jadidi, M., Moghtadernejad, S., Dolatabadi, A.: Penetration and breakup of liquid jet in transverse free air jet with application in suspension-solution thermal sprays. Mater. Des. 110, 425–435 (2016)

    Article  Google Scholar 

  8. Schetz, J. A., Padhye, A.: Penetration and breakup of liquids in subsonic airstreams. AIAA J. 15(10), 1385–1390 (1977)

    Article  Google Scholar 

  9. Wu, P. -K., Kirkendall, K. A., Fuller, R. P., Nejad, A. S.: Breakup processes of liquid jets in subsonic crossflows. J. Propuls. Power 13(1), 64–73 (1997)

    Article  Google Scholar 

  10. Behzad, M., Ashgriz, N., Mashayek, A.: Azimuthal shear instability of a liquid jet injected into a gaseous cross-flow. J. Fluid Mech. 767, 146–172 (2015)

    Article  MathSciNet  Google Scholar 

  11. Linne, M.: Imaging in the optically dense regions of a spray: A review of developing techniques. Prog. Energy Combust. Sci. 39(5), 403–440 (2013)

    Article  Google Scholar 

  12. Sedarsky, D., Paciaroni, M., Zelina, J., Linne, M.: Near field fluid structure analysis for jets in crossflow with ballistic imaging ILASS Americas 20th Annual Conference on Liquid Atomization and Spray Systems (2007)

    Google Scholar 

  13. Wang, M., Broumand, M., Birouk, M.: Liquid Jet Trajectory in a Subsonic Gaseous Cross-flow: an Analysis of Published Correlations. At. Sprays 26(11), 1083–1110 (2016)

    Article  Google Scholar 

  14. Broumand, M., Birouk, M.: Liquid jet in a subsonic gaseous crossflow: Recent progress and remaining challenges. Prog. Energy Combust. Sci. 57, 1–29 (2016)

    Article  Google Scholar 

  15. Brown, C., McDonell, V.: Near field behavior of a Liquid Jet in a Crossflow ILASS Americas (2006)

    Google Scholar 

  16. Lefebvre, A. H.: Atomization and Sprays. Hemisphere, New York (1989)

    Google Scholar 

  17. Brown, C. T., Mondragon, M. U., McDonell, G. V.: Investigation of the Effect of Injector Discharge Coefficient on Penetration of a Plain Liquid Jet into a Subsonic Crossflow ILASS Americas 20th Annual Conference on Liquid Atomization and Spray Systems, pp 15–18 (2007)

    Google Scholar 

  18. Brown, C. T., Mondragon, U. M., McDonell, V. G.: Liquid Jet in Crossflow: Consideration of Injector Geometry and Liquid Physical Properties ILASS Americas 25th Annual Conference on Liquid Atomization and Spray Systems (2013)

    Google Scholar 

  19. Ahn, K., Kim, J., Yoon, Y.: Effect of Cavitation on Transverse Injection into Subsonic Crossflows 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit American Institute of Aeronautics and Astronautics (2003)

    Google Scholar 

  20. Ahn, K., Kim, J., Yoon, Y.: Effects of orifice internal flow on transverse injection into subsonic crossflows: Cavitation and hydraulic flip. At. Sprays 16(1), 15–34 (2006)

    Article  Google Scholar 

  21. Lubarsky, E., Shcherbik, D., Bibik, O., Gopala, Y., Bennewitz, J. W., Zinn, B. T.: Fuel Jet in Cross Flow- Experimental Study of Spray Characteristics 23rd Annual Conference on Liquid Atomization and Spray Systems (2011)

    Google Scholar 

  22. Lee, K., Aalburg, C., Diez, F. J., Faeth, G. M., Sallam, K. A.: Primary breakup of turbulent round liquid jets in uniform crossflows. AIAA J. 45(8), 1907–1916 (2007)

    Article  Google Scholar 

  23. Osta, A. R., Sallam, K. A.: Nozzle-Geometry Effects on Upwind-Surface properties of turbulent liquid jets in gaseous crossflow. J. Propuls. Power 26(5), 936–946 (2010)

    Article  Google Scholar 

  24. Sallam, K. A., Aalburg, C., Faeth, G. M.: Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA J. 42(12), 2529–2540 (2004)

    Article  Google Scholar 

  25. Wu, P. -K., Miranda, R. F., Faeth, G. M.: Effects of initial flow conditions on primary breakup of nonturbulent and turbulent round liquid jets. At. Sprays 5(2), 175–196 (1995)

    Article  Google Scholar 

  26. Farvardin, E., Johnson, M., Alaee, H., Martinez, A., Dolatabadi, A.: Comparative study of biodiesel and diesel jets in gaseous crossflow. J. Propuls. Power 29(6), 1292–1302 (2013)

    Article  Google Scholar 

  27. Eslamian, M., Amighi, A., Ashgriz, N.: Atomization of liquid jet in High-Pressure and High-Temperature subsonic crossflow. AIAA J. 52(7), 1374–1385 (2014)

    Article  Google Scholar 

  28. Broumand, M., Birouk, M.: A model for predicting the trajectory of a liquid jet in a subsonic gaseous crossflow. At. Sprays 25(10), 871–893 (2015)

    Article  Google Scholar 

  29. Broumand, M., Birouk, M.: Two-Zone Model for predicting the trajectory of liquid jet in gaseous crossflow. AIAA J. 54(5), 1499–1511 (2016)

    Article  Google Scholar 

  30. Sallam, K. A., Dai, Z., Faeth, G. M.: Liquid breakup at the surface of turbulent round liquid jets in still gases. Int. J. Multiph. Flow 28(3), 427–449 (2002)

    Article  MATH  Google Scholar 

  31. Iyogun, C. O., Birouk, M., Popplewell, N.: Trajectory of water jet exposed to low subsonic Cross-Flow. At. Sprays 16(8), 963–980 (2006)

    Article  Google Scholar 

  32. Birouk, M., Iyogun, C. O., Popplewell, N.: Role of viscosity on trajectory of liquid jets in a Cross-Airflow. At. Sprays 17(3), 267–287 (2007)

    Article  Google Scholar 

  33. Birouk, M., Baafour, N. -K., Popplewell, N.: Effect of nozzle geometry on breakup length and trajectory of liquid jet in subsonic crossflow. At. Sprays 21(10), 847–865 (2011)

    Article  Google Scholar 

  34. Iyogun, C. O.: Trajectory of liquid jets exposed to a low subsonic cross airflow. University of Manitoba, M.Sc.Thesis (2005)

    Google Scholar 

  35. Baafour, N. -K.: Experimental examination of nozzle geometry on water jet in a subsonic crossflow. University of Manitoba, M.Sc.Thesis (2011)

    Google Scholar 

  36. Stenzler, J. N., Lee, J. G., Santavicca, D. A., Lee, W.: Penetration of liquid jets in a Cross-Flow. At. Sprays 16(8), 887–906 (2006)

    Article  Google Scholar 

  37. Thawley, S. M., Mondragon, U. M., Brown, C. T., Mcdonell, V. G.: Evaluation of Column Breakpoint and Trajectory for a Plain Liquid Jet Injected into a Crossflow, 1–11 (2008)

Download references

Acknowledgments

The financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Manitoba Graduate Fellowship (UMGF) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Birouk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broumand, M., Rigby, G. & Birouk, M. Effect of Nozzle Exit Turbulence on the Column Trajectory and Breakup Location of a Transverse Liquid Jet in a Gaseous Flow. Flow Turbulence Combust 99, 153–171 (2017). https://doi.org/10.1007/s10494-017-9806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9806-1

Keywords

Navigation