Flow, Turbulence and Combustion

, Volume 98, Issue 4, pp 1039–1063 | Cite as

Transient Characterization of the Reattachment of a Massively Separated Turbulent Boundary Layer Under Flow Control

  • C. RaibaudoEmail author
  • M. Stanislas
  • F. Kerhervé


The transient dynamics of a high Reynolds number separated flow over a two-dimensional ramp submitted to pulsed fluidic control is investigated. A spanwise array of 22 round jets, located upstream of the flap leading edge, is used as actuator to generate co-rotating vortical structures. Simultaneous measurements of wall friction using hot-film anemometry and phase-averaged velocity using 2D2C PIV are conducted. The PIV plane encompasses the incoming boundary layer upstream the flap leading edge, the separation bubble and the natural reattachment region. The dynamics of the separated flow is studied for successive sequences of pulsed actuation. Pockets of turbulence are periodically generated by the separation process and pushed downstream. After the transition period, the controlled flow shows large amplitude oscillations around a steady mean, particularly for the separation area. The transient dynamics of the flow at the actuation activation is also studied. The separated flow is strongly modified by the actuation from the first pulse. Characteristic times of the transient dynamics can be determined by fitting a first-order model with delay on the data. For the reattachment, the dimensionless characteristic rising times defined as \(\tau _{r}^{+} = \tau _{r} ~ U_{0} ~/~ L_{sep}\) of 11.7 for the friction gain, 4.8 for the separation length and 4.1 for the first mode of a Conditional Proper Orthogonal Decomposition analysis of the phase-averaged velocity fields were found. These values are in good agreement with previous studies and are of particular interest for modeling the transients and for further closed-loop control applications.


Boundary layer Turbulence Adverse pressure gradient Flow Control Pulsed jets Transient dynamics POD 

List of symbols

Reference axis

(X, Y, Z)

Coordinates with origin considered at the leading edge of

the flap


Reduced time t = t U 0 / H s



Area of the separation bubble


Turbulent kinetic energy \(k = \frac {1}{2} (u^{\prime 2} + v^{\prime 2})\)

\(\widehat {k}\)

Phase-averaged turbulent kinetic energy


Length of the separation bubble


Reynolds number based on 𝜃


Strouhal number St = f L 0 / U 0

Umean, Vmean

Mean streamwise and wall-normal velocity for the

separated flow

\(\widehat {U}, \widehat {V}\)

Phase-averaged mean streamwise and wall-normal velocity


Reference freestream velocity of the flow at the leading



Position of the reattachment point


Position of the separation point


Boundary layer thickness


Backflow function


Momentum thickness of the boundary layer



Step height

αR / βR

Angles of the ramp configuration

Metrology (hot-films, PIV)


Friction gain (E 0 friction of the flow without control)


Lenses focal




Frequency of phase-averaging PIV




Time separation between two laser pulses


<cμ >

Transient momentum coefficient

\(<c_{\mu }>= DC~ (N_{j} \rho _{j} {U_{j}^{2}} S_{j} ) ~/~ (0.5 \rho _{0} {U_{0}^{2}} \delta \lambda )\)


Duty cycle


Frequency of actuation


Reduced frequency of actuation F + = f L sep / U 0


Reduced optimum frequency of actuation

\(F_{opt}^{+} = f_{opt}~L_{sep}~/~U_{0}\)


Number of actuators


Mean velocity of the jets


Vortex generator


Velocity ratio of the jets U j / U 0

α / β

Skew/pitch angles of the jets (around Z-axis/around X-axis)


Distance between the vortex generators jets and the

separation line


Span distance between two consecutive jets


Diameter of the jets



i th temporal mode for the Conditional Proper Orthogonal



Number of modes for the Proper Orthogonal Decomposition

\(\widehat {U}_{b}\)

Phase-averaged streamwise velocity downstream the

leading edge \(\mathbf {\widehat {U}_{b}} (\mathbf {x},t_{p}) = \mathbf {\widehat {U}} (\mathbf {x}(X>0,Y),t_{p})\)

\(\widehat {\Phi }_{i}\)

i th spatial mode for the Conditional Proper Orthogonal




Number of cycles used for the phase-averaging procedure


Number of phases during the transition


Delay time


Time position compared to one actuation period

(\(0 \leqslant t^{\triangle } < T\))

τr, τs

Characteristic reattachment/separation time

\(\tau _{r}^{+}, \tau _{s}^{+}\)

Reduced characteristic reattachment/separation time

\(\tau _{\star }^{+} = \tau _{\star } ~ U_{0} ~/~ L_{sep}\)



The present work is supported by the Agence National de la Recherche (ANR) through the french ANR project SePaCode (ANR-11-BS09-0018) and by the CISIT International Campus through the Contraéro project. The authors are indepted to C. Cuvier for his help during the experiments and for the PIV images processing.


  1. 1.
    Gad-el hak, M.: Flow control: passive, active and reactive flow management, cambridge edn (2000)Google Scholar
  2. 2.
    Marquillie, M., Ehrenstein, U., Laval, J.P.: Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205–240 (2011). doi: 10.1017/jfm.2011.193 CrossRefzbMATHGoogle Scholar
  3. 3.
    Compton, D.A., Johnston, J.P.: Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer. AIAA J. 30(3), 640–647 (1992). doi: 10.2514/3.10967 CrossRefGoogle Scholar
  4. 4.
    Tilmann, C., Langan, K., Betterton, J., Wilson, M.: Characterisation of pulsed vortex generator jets for active flow control. In: Symposium on “Active Control Technology” for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles (2006)Google Scholar
  5. 5.
    Tian, Y., Cattafesta, L.N., Mittal, R.: Adaptive Control of Separated Flow. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, USA. doi: 10.2514/6.2006-1401 (2006)
  6. 6.
    Benard, N., Moreau, E., Griffin, J., Cattafesta, L.N.: Slope seeking for autonomous lift improvement by plasma surface discharge. Exp. Fluids 48(5), 791–808 (2010). doi: 10.1007/s00348-009-0767-6 CrossRefGoogle Scholar
  7. 7.
    Seifert, A., Darabi, A., Wyganski, I.: Delay of airfoil stall by periodic excitation. J. Aircr. 33(4), 691–698 (1996). doi: 10.2514/3.47003 CrossRefGoogle Scholar
  8. 8.
    Selby, G.V., Lin, J.C., Howard, F.G.: Control of low-speed turbulent separated flow using jet vortex generators. Exp. Fluids 12(6), 394–400 (1992). doi: 10.1007/BF00193886 CrossRefGoogle Scholar
  9. 9.
    Godard, G., Foucaut, J.M., Stanislas, M.: Control of a decelerating boundary layer. Part 2: Optimization of slotted jets vortex generators. Aerosp. Sci. Technol. 10 (6), 455–464 (2006). doi: 10.1016/j.ast.2005.11.005 CrossRefGoogle Scholar
  10. 10.
    Cuvier, C.: Active control of a separated turbulent boundary layer in adverse pressure gradient. PhD thesis, École Centrale de Lille (2012)Google Scholar
  11. 11.
    McManus, K., Legner, H., Davis, S.: Pulsed vortex generator jets for active control of flow separation. In: AIAA paper, American Institute of Aeronautics and Astronautics, Colorado Springs, USA. doi: 10.2514/6.1994-2218 (1994)
  12. 12.
    Lögdberg, O.: Turbulent boundary layer separation and control. PhD thesis, KTH (2008)Google Scholar
  13. 13.
    Milanovic, I.M., M Q Zaman, K.B.: Fluid Dynamics of Highly Pitched and Yawed Jets in Crossflow. ASIA J. 42(5), 874–882 (2004). doi: 10.2514/1.2924 Google Scholar
  14. 14.
    Godard, G., Stanislas, M.: Control of a decelerating boundary layer. Part 3: Optimization of round jets vortex generators. Aerosp. Sci. Technol. 10(6), 455–464 (2006). doi: 10.1016/j.ast.2005.11.005 CrossRefGoogle Scholar
  15. 15.
    Ortmanns, J., Bitter, M., Kähler, C.J.: Dynamic vortex structures for flow-control applications. Exp. Fluids 44(3), 397–408 (2008). doi: 10.1007/s00348-007-0442-8 CrossRefGoogle Scholar
  16. 16.
    Amitay, M., Glezer, A.: Controlled transients of flow reattachment over stalled airfoils. Int. J. Heat Fluid Flow 23(5), 690–699 (2002). doi: 10.1016/S0142-727X(02)00165-0 CrossRefGoogle Scholar
  17. 17.
    Darabi, A., Wygnanski, I.: Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J. Fluid Mech. 510, 105–129 (2004). doi: 10.1017/S0022112004009231 CrossRefzbMATHGoogle Scholar
  18. 18.
    Mathis, R., Lebedev, A., Collin, E., Delville, J., Bonnet, J.P.: Experimental study of transient forced turbulent separation and reattachment on a bevelled trailing edge. Exp. Fluids 46(1), 131–146 (2009). doi: 10.1007/s00348-008-0549-6 CrossRefGoogle Scholar
  19. 19.
    Woo, G.T.K., Crittenden, T., Glezer, A.: Transitory separation control over a stalled airfoil. In: 39th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, San Antonio, USA. doi: 10.2514/6.2009-4281(2009)
  20. 20.
    Kerstens, W., Pfeiffer, J., Williams, D., King, R., Colonius, T.: Closed-Loop Control of Lift for Longitudinal Gust Suppression at Low Reynolds Numbers. AIAA J. 49(8), 1721–1728 (2011). doi: 10.2514/1.J050954 CrossRefGoogle Scholar
  21. 21.
    Shaqarin, T., Braud, C., Coudert, S., Stanislas, M.: Open and closed-loop experiments to identify the separated flow dynamics of a thick turbulent boundary layer. Exp. Fluids 54(2), 1448 (2013). doi: 10.1007/s00348-012-1448-4 CrossRefGoogle Scholar
  22. 22.
    Stalnov, O., Palei, V., Fono, I., Cohen, K., Sievert, A.: Experimental estimation of a D-shaped cylinder wake using body-mounted sensors. Exp. Fluids 42 (4), 531–542 (2007). doi: 10.1007/s00348-007-0255-9 CrossRefGoogle Scholar
  23. 23.
    Chabert, T., Dandois, J., Garnier, E., Jacquin, L.: Experimental detection of a periodically forced turbulent boundary layer separation. Exp. Fluids 54(2) (2013). doi: 10.1007/s00348-012-1430-1
  24. 24.
    Nakayama, A., Stack, J.P., Lin, J.C., Valarezo, W.O.: Surface hot-film method for the measurement of transition, separation and reattachment points. In: AIAA 24th Fluid Dynamics, Plasmadynamics, and Lasers Conference, 0rlando, USA (1993)Google Scholar
  25. 25.
    Siauw, W.L., Bonnet, J.P., Tensi, J., Cordier, L., Noack, B.R., Cattafesta, L.: Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators. Int. J. Heat Fluid Flow 31(3), 450–459 (2010). doi: 10.1016/j.ijheatfluidflow.2010.02.028 CrossRefGoogle Scholar
  26. 26.
    Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143–188 (2005). doi: 10.1017/S0022112005004751 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cuvier, C., Foucaut, J., Braud, C., Stanislas, M.: Characterisation of a high Reynolds number boundary layer subject to pressure gradient and separation. J. Turbul. 15(8), 473–515 (2014). doi: 10.1080/14685248.2014.914217 CrossRefGoogle Scholar
  28. 28.
    Kostas, J., Foucaut, J.M., Stanislas, M.: The flow structure produced by pulsed-jet vortex generators in a turbulent boundary layer in an adverse pressure gradient. Flow Turbul. Combust. 78, 331–363 (2007). doi: 10.1007/s10494-007-9069-3 CrossRefGoogle Scholar
  29. 29.
    Braud, C., Dyment, A.: Model of an impulsive subsonic jet actuator for flow control applications. Phys. Fluids 24(4) (2012). doi: 10.1063/1.3701377
  30. 30.
    Foucaut, J.M., Coudert, S., Braud, C., Velte, C.: Influence of light sheet separation on SPIV measurement in a large field spanwise plane. Meas. Sci. Technol. 25 (2014). doi: 10.1088/0957-0233/25/3/035304
  31. 31.
    Simpson, R.L.: Turbulent boundary layer separation. Ann. Rev. Fluid Mech. 21, 205–234 (1989). doi: 10.1016/0376-0421(95)00012-7 CrossRefzbMATHGoogle Scholar
  32. 32.
    Shaqarin, T.: Closed-loop active separation control. PhD thesis, Université de Lille 1 (2011)Google Scholar
  33. 33.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 9(1), 112–147 (1998). doi: 10.1137/S1052623496303470 CrossRefzbMATHGoogle Scholar
  34. 34.
    Raibaudo, C.: Characterization of the transient of a separated turbulent boundary layer under control and applications to advanced closed-loop controllers. PhD thesis, École Centrale de Lille (2015)Google Scholar
  35. 35.
    Chun, K.B., Sung, H.J.: Control of turbulent separated flow over a backward-facing step by local forcing. Exp. Fluids 21(6), 417–426 (1996). doi: 10.1007/BF00189044 CrossRefGoogle Scholar
  36. 36.
    Hasan, M.A.Z.: The flow over a backward-facing step under controlled perturbation: laminar separation. J. Fluid Mech. 238, 73–96 (1992). doi: 10.1017/S0022112092001642 CrossRefGoogle Scholar
  37. 37.
    Gautier, N., Aider, J.L.: Feed-forward control of a perturbed backward-facing step flow. J. Fluid Mech. 759, 181–196 (2014). doi: 10.1017/jfm.2014.518 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire de Mécanique de LilleCNRS, École Centrale de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Department of Mechanical and Manufacturing Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  3. 3.École Centrale de LilleVilleneuve d’Ascq CedexFrance
  4. 4.ENSMA, CEAT, Institut PPRIME, CNRSUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations