Skip to main content

Characterization of Turbulent Structures in a Transonic Backward-Facing Step Flow


A transonic backward-facing step flow, at a free stream Mach number of 0.8 and a Reynolds number of 1.86 × 105 with respect to the step height, was investigated experimentally by means of planar and stereo Particle Image Velocimetry (PIV) measurements for multiple fields of view. The primary aim of this analysis is to examine whether the large temporal variations of the reattachment location is associated with the presence of large scale coherent flow structures. The mean flow reattaches ≈6.1±0.2 times the step height downstream of the step. This value fluctuates temporally as much as ±3 step heights. Measurements of the wake flow in horizontal planes show that the strong variations of the reattachment length are associated with spanwise variations of the streamwise velocity. Two-point correlations revealed large–scale coherent regions with a length of up to 7 step heights and a dominant spanwise wave-length of 1.5…2.5 step heights. Furthermore, close to the step large structures are found, which span more than 5 step heights in spanwise direction. The Reynolds stress distribution of the separated region strongly suggests that the initial streamwise momentum is transferred to the vertical component as well as to the spanwise component in comparable portions by the deformation of the initial Kelvin-Helmholtz vortices and the generation of secondary ones. As a result, the separated shear layer is characterized by eddies of various sizes and orientations. The mean flow field only shows the primary separation bubble and a secondary recirculation region. No stationary streamwise vortices could be found for the tested Reynolds number.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Bradshaw, P., Wong, F.Y.F.: The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52, 113–135 (1972)

    Article  Google Scholar 

  2. 2.

    Eaton, J.K., Johnston, J.P.: A review of research on subsonic turbulent flow reattachment. AIAA J. 19, 1093–1100 (1981)

    Article  Google Scholar 

  3. 3.

    Simpson, R.L.: Turbulent boundary-layer separation. Ann. Rev. Fl. Mech. 21, 205–232 (1989)

    Article  MATH  Google Scholar 

  4. 4.

    Scharnowski, S., Bolgar, I., Kähler, C.J.: Control of the recirculation region of a transonic backward-facing step flow using circular lobes. In: 9th International Symposium on Turbulence and Shear Flow Phenomena (TSFP), Melbourne (2015)

  5. 5.

    Bolgar, I., Scharnowski, S., Kähler, C.J.: Control of the reattachment length of a transonic 2d backwardfacing step flow. In: Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows, ICJWSF2015 (2016). doi:10.1007/978-3-319-30602-5

  6. 6.

    Beaudoin, J.-F., Cadot, O., Aider, J.-L., Wesfreid, J.E.: Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech.-B/Fluids 23(1), 147–155 (2004)

    Article  MATH  Google Scholar 

  7. 7.

    Barkley, D., Gomes, M.G.M., Henderson, R.D.: Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167–190 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bernal, L.P., Roshko, A.: Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499–525 (1986)

    Article  Google Scholar 

  9. 9.

    Brede, M., Eckelmann, H., Rockwell, D.: On secondary vortices in the cylinder wake. Phys. Fluids 8(8), 2117–2124 (1996)

    Article  Google Scholar 

  10. 10.

    Mittal, R., Balachandar, S.: Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75(7), 1300 (1995)

    Article  Google Scholar 

  11. 11.

    Williamson, C.H.K.: Three-dimensional wake transition. J. Fluid Mech. 328, 345–407 (1996)

    Article  MATH  Google Scholar 

  12. 12.

    Ginoux, J.J.: Streamwise vortices in reattaching high-speed flows-a suggested approach. AIAA J. 9(4), 759–760 (1971)

    Article  Google Scholar 

  13. 13.

    Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J., Schröder, W.: Analysis of characteristic wake flow modes on a generic planar transonic space launcher configuration. In: 6th European Conference for Aeronautics and Space Science (EUCASS) (2015)

  14. 14.

    Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J., Schröder, W.: Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Eur. J. Mech.-B/Fluids 59, 124–134 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Bitter, M., Scharnowski, S., Hain, R., Kähler, C.J.: High-repetition-rate PIV investigations on a generic rocket model in sub- and supersonic flows. Exp. Fluids 50, 1019–1030 (2011)

    Article  Google Scholar 

  16. 16.

    Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics. Exp. Fluids 33, 736–742 (2002)

    Article  Google Scholar 

  17. 17.

    Scharnowski, S., Kähler, C.J.: On the loss-of-correlation due to piv image noise. Exp. Fluids 57(7), 1–12 (2016)

    Article  Google Scholar 

  18. 18.

    Scharnowski, S., Kähler, C.J.: On the effect of curved streamlines on the accuracy of PIV vector fields. Exp. Fluids 54, 1435 (2013)

    Article  Google Scholar 

  19. 19.

    Scharnowski, S., Kähler, C.J.: Estimation and optimization of loss-of-pair uncertainties based on PIV correlation functions. Exp Fluids 57, 23 (2016)

    Article  Google Scholar 

  20. 20.

    Cierpka, C., Scharnowski, S., Kähler, C.J.: Parallax correction for precise near-wall flow investigations using particle imaging. Appl. Opt. 52, 2923–2931 (2013)

    Article  Google Scholar 

  21. 21.

    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641–1656 (2012)

    Article  Google Scholar 

  22. 22.

    Neal, D.R., Sciacchitano, A., Smith, B.L., Scarano, F.: Collaborative framework for piv uncertainty quantification: The experimental database. Meas Sci. Tech., 26 (2015)

  23. 23.

    Sciacchitano, A., Neal, D.R., Smith, B.L., Warner, S.O., Vlachos, P.P., Wieneke, B., Scarano, F.: Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci. Tech. 26(7), 074004 (2015)

    Article  Google Scholar 

  24. 24.

    Timmins, B.H., Wilson, B.W., Smith, B.L., Vlachos, P.P.: A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp. Fluids 53(4), 1133–1147 (2012)

    Article  Google Scholar 

  25. 25.

    Wieneke, B.: PIV uncertainty quantification from correlation statistics. Meas Sci. Tech. 26(7), 074002 (2015)

    Article  Google Scholar 

  26. 26.

    Wilson, B.M., Smith, B.L.: Uncertainty on PIV mean and fluctuating velocity due to bias and random errors. Meas Sci. Tech. 24(3), 035302 (2013)

    Article  Google Scholar 

  27. 27.

    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J., Scarano, F.: Main results of the third international PIV challenge. Exp. Fluids 45, 27–71 (2008)

    Article  Google Scholar 

  28. 28.

    Avallone, F., Discetti, S., Astarita, T., Cardone, G.: Convergence enhancement of single-pixel piv with symmetric double correlation. Exp. Fluids 56(4), 1–11 (2015)

    Google Scholar 

  29. 29.

    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52, 1629–1639 (2012)

    Article  Google Scholar 

  30. 30.

    Schlichting, H., Gersten, K.: Grenzschicht-Theorie. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. 31.

    Scharnowski, S., Statnikov, V., Meinke, M., Schröder, W., Kähler, C.J.: Combined experimental and numerical investigation of a transonic space launcher wake. In: Progress in Flight Physics–Volume 7. EDP Sciences, vol. 7, pp 311–328 (2015)

  32. 32.

    Ho, C.-M., Huang, L.-S.: Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443–473 (1982)

    Article  Google Scholar 

  33. 33.

    Kähler, C.J., Astarita, T., Vlachos, P.P., Sakakibara, J., Hain, R., Discetti, S., Foy, R., Cierpka, C.: Main results of the 4th International PIV Challenge. Exp. Fluids 57(6), 1–71 (2016)

    Article  Google Scholar 

  34. 34.

    Bitter, M., Hara, T., Hain, R., Yorita, D., Asai, K., Kähler, C.J.: Characterization of pressure dynamics in an axisymmetric separating/reattaching flow using fast-responding pressure-sensitive paint. Exp. Fluids 53, 1737–1749 (2012)

    Article  Google Scholar 

  35. 35.

    Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys Fluids 19, 065103 (2007)

    Article  MATH  Google Scholar 

  36. 36.

    Depres, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42, 2541–2550 (2004)

    Article  Google Scholar 

  37. 37.

    Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25(7), 914–919 (1987)

    Article  Google Scholar 

  38. 38.

    Hannemann, K., Lüdeke, H., Pallegoix, J.-F., Ollivier, A., Lambar, H., Maseland, J.E.J., Geurts, E.G.M., Frey, M., Deck, S., Schrijer, F.F.J., Scarano, F., Schwane, R.: Launcher vehicle base buffeting - recent experimental and numerical investigations. In: Proceedings 7th European Symposium on Aerothermodynamics for Space Vehicles, Brugge (2011)

  39. 39.

    Weiss, P.-E., Deck, S.: Numerical investigation of the robustness of an axisymmetric separating/reattaching flow to an external perturbation using ZDES. Flow, Turbulence and Combustion 91(3), 697–715 (2013)

    Article  Google Scholar 

  40. 40.

    Weiss, P.-E., Deck, S., Robinet, J.-C., Sagaut, P.: On the dynamics of axisymmetric turbulent separating/reattaching flows. Phys. Fluids 21, 075103 (2009)

    Article  MATH  Google Scholar 

  41. 41.

    Scharnowski, S., Kähler, C.J.: Investigation of a transonic separating/reattaching shear layer by means of PIV. Theor. Appl. Mech. Lett. 5, 30–34 (2015)

    Article  Google Scholar 

  42. 42.

    Adams, E.W., Johnston, J.P.: Flow structure in the near-wall zone of a turbulent separated flow. AIAA J. 26(8), 932–939 (1988)

    Article  Google Scholar 

Download references


Financial support from the German Research Foundation in the framework of the TRR 40 – Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems – is gratefully acknowledged by the authors.

Author information



Corresponding author

Correspondence to Sven Scharnowski.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scharnowski, S., Bolgar, I. & Kähler, C.J. Characterization of Turbulent Structures in a Transonic Backward-Facing Step Flow. Flow Turbulence Combust 98, 947–967 (2017).

Download citation


  • Backward-facing step
  • Coherent flow structures
  • Particle image velocimetry