Skip to main content

LES-CMC of a Partially Premixed, Turbulent Dimethyl Ether Jet Diffusion Flame


Large-eddy simulations have been coupled with a conservative formulation of the conditional moment closure (CMC) approach for the computation of a turbulent, partially-premixed dimethyl-ether jet flame. Two different numerical setups and 3 different detailed chemical mechanisms were investigated. The results are compared with measurements of velocity, temperature, and major and intermediate species. The general agreement between simulations and experiments is very good, and differences between the different mechanisms are limited to the predicted concentrations of intermediates only. Larger differences can be observed if the CMC grid size is reduced. This is due to reduced averaging effects on the conditionally averaged dissipation rates that allow to better capture high dissipation events that lead to larger deviations from a fully burning solution. A high CMC resolution provides excellent agreement with experiments throughout the flame and the results demonstrate CMC’s capability to accurately predict turbulence-chemistry interactions in partially-premixed flames involving complex chemistry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Curran, H., Pitz, W., Westbrook, C., Dagaut, P., Boettner, J., Cathonnet, M.: A wide range modeling study of dimethyl ether oxidation. Int. J. Chem. Kinetics 30(3), 229–241 (1998)

    Article  Google Scholar 

  2. 2.

    Kaiser, E., Wailington, T., Hurley, M., Platz, J., Curran, H., Pitz, W., Westbrook, C.: Experimental and modeling study of premixed atmospheric-pressure dimethyl ether-air flames. J. Phys. Chem. A 104(35), 8194–8206 (2000)

    Article  Google Scholar 

  3. 3.

    Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J.: A hierarchical and comparative kinetic modeling study of C-1 - C-2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinetics 45(10), 638–675 (2013)

    Article  Google Scholar 

  4. 4.

    Prince, J., Williams, F.: A short reaction mechanism for the combustion of dimethyl-ether. Combust. Flame 162(10), 3589–3595 (2015)

    Article  Google Scholar 

  5. 5.

    Zhao, Z., Chaos, M., Kazakov, A., Dryer, F.: Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinetics 40, 1–18 (2008)

    Article  Google Scholar 

  6. 6.

    International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF): available at (2015)

  7. 7.

    Barlow, R.S., Frank, J.H.: Effect of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  8. 8.

    Gabet, K.N., Shen, H., Patton, R.A., Fuest, F., Sutton, J.A.: A comparison of turbulent dimethyl ether and methane non-premixed flame structure. Proc. Combust. Inst. 34(1), 1447–1454 (2013)

    Article  Google Scholar 

  9. 9.

    Coriton, B., Zendehdel, M., Ukai, S., Kronenburg, A., Stein, O., Im, S.K., Gamba, M., Frank, J.: Imaging measurements and LES-CMC modelin of a partially-premixed turbulent dimethyl ether/air jet flame. Proc. Combust. Inst. 35, 1251–1258 (2015). doi:10.1016/j.proci.2014.06.042

    Article  Google Scholar 

  10. 10.

    Fuest, F., Magnotti, G., Barlow, R.S., Sutton, J.A.: Scalar structure of turbulent partially-premixed dimethyl ether/air jet flames. Proc. Combust. Inst. 35(2), 1235–1242 (2015)

    Article  Google Scholar 

  11. 11.

    Bansal, G., Mascarenhas, A., Chen, J.H.: Direct numerical simulations of autoignition in stratified dimethyl-ether (dme)/air turbulent mixtures. Combust. Flame 162(3), 688–702 (2015)

    Article  Google Scholar 

  12. 12.

    Bhagatwala, A., Luo, Z., Shen, H., Sutton, J.A., Lu, T., Chen, J.H.: Numerical and experimental investigation of turbulent DME jet flames. Proc. Combust. Inst. 35(2), 1157–1166 (2015)

    Article  Google Scholar 

  13. 13.

    Roy, R.N., Sreedhara, S.: A numerical study on the influence of airstream dilution and jet velocity on NO emission characteristics of CH4 and DME bluff-body flames. Fuel 142, 73–80 (2015)

    Article  Google Scholar 

  14. 14.

    Popp, S., Hunger, F., Hartl, S., Messig, D., Coriton, B., Frank, J., Fuest, F., Hasse, C.: LES flamelet-progress variable modelling and measurements of a partially-premixed turbulent dimethyl ether jet diffusion flame. Combust. Flame 162, 3016–3029 (2015)

    Article  Google Scholar 

  15. 15.

    Navarro-Martinez, S., Kronenburg, A., di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75, 245–274 (2005)

    Article  MATH  Google Scholar 

  16. 16.

    Triantafyllidis, A., Mastorakos, E.: Implementation issues of the conditional moment closure in large eddy simulations. Flow Turbul. Combust. 84, 481–512 (2010)

    Article  MATH  Google Scholar 

  17. 17.

    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  18. 18.

    Klimenko, A.Y., Bilger, R.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–688 (1999)

    Article  Google Scholar 

  19. 19.

    Cleary, M., Kent, J., Bilger, R.: Prediction of carbon monoxide in fires by conditional moment closure. Proc. Combust. Inst. 29, 273–279 (2002)

    Article  Google Scholar 

  20. 20.

    Navarro-Martinez, S., Kronenburg, A.: Flame stabilization mechanisms in lifted flames. Flow Turbul. Combust. 87, 377–406 (2011)

    Article  MATH  Google Scholar 

  21. 21.

    Ukai, S., Kronenburg, A., Stein, O.T.: LES-CMC of a dilute acetone spray flame. Proc Combust Inst 34, 1643–1650 (2013). doi:10.1016/j.proci.2012.05.023

    Article  Google Scholar 

  22. 22.

    Ukai, S., Kronenburg, A., Stein, O.T.: Large eddy simulation of a dilute acetone spray flame using CMC coupled with tabulated chemistry. Proc. Combust. Inst. 35, 1667–1674 (2015). doi:10.1016/j.proci.2014.06.013

    Article  Google Scholar 

  23. 23.

    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  24. 24.

    Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modelling. Phys. Fluids 29, 2152–2164 (1986)

    Article  MATH  Google Scholar 

  25. 25.

    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 10, 1246–1248 (1998)

    MATH  Google Scholar 

  26. 26.

    Fuest, F., Barlow, R.S., Chen, J.Y., Dreizler, A.: Raman/Rayleigh scattering and CO-LIF measurements in laminar and turbulet jet flames of dimethyl ether. Combust. Flame 159, 2533–2562 (2012)

    Article  Google Scholar 

  27. 27.

    Klimenko, A.Y., Pope, S.: The modelling of turbulent reacting flows based on multiple mapping conditioning. Phys. Fluids 15(7), 1907–1925 (2003)

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors thank Drs. J.H. Frank and B. Coriton and Drs. R.S. Barlow and F. Fuest for providing the PIV, LIF and Raman measurements, respectively. The Aramco 1.3 chemical mechanism has been kindly made available by Prof. H.J Curran. We acknowledge the computing time provided by HLRS Stuttgart.

Author information



Corresponding author

Correspondence to A. Kronenburg.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kronenburg, A., Stein, O.T. LES-CMC of a Partially Premixed, Turbulent Dimethyl Ether Jet Diffusion Flame. Flow Turbulence Combust 98, 803–816 (2017).

Download citation


  • CMC
  • LES
  • DME
  • Turbulence-chemistry interactions
  • Combustion