Skip to main content
Log in

The Effect of Droplets Evaporation on Turbulence Modification and Heat Transfer Enhancement in a Two-Phase Mist Flow Downstream of a Pipe Sudden Expansion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent droplet-laden flow downstream of a sudden pipe expansion is numerically studied using an Eulerian two-fluid model. The model is used to investigate the effect of droplet evaporation on the particle dispersion and on the gas phase turbulence modification. Turbulence suppression in the case of evaporating droplets is hardly observed near the wall, and the level of turbulence tends to the corresponding value for the single-phase flow regime. In the flow core, where evaporation is insignificant, a decrease in the level of gas turbulence (to 20 % as compared to a single-phase flow) can be observed. The maximal effect of droplet evaporation is obtained in the wall region of the tube. A considerable increase in the maximal value of heat exchange on adding the evaporating droplets to the separated flow is shown (more than 1.5-fold as compared to the single-phase flow at a small value of droplet mass concentration of M L1≤ 0.05). The addition of the solid non-evaporating particles causes a slight increase in the maximum value of heat transfer in the case of small particles and a decrease in heat transfer in the case of large particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Fessler, J.R., Eaton, J.K.: Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech. 314, 97–117 (1999)

    Article  MATH  Google Scholar 

  2. Gore, R.A., Crowe, C.T.: The effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow 15, 279–285 (1989)

    Article  Google Scholar 

  3. Kulick, J.D., Fessler, J.R., Eaton, J.K.: Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech 277, 109–134 (1994)

    Article  Google Scholar 

  4. Varaksin, A.Y., Polezhaev, Y.V., Polyakov, A.F.: Experimental investigation of solid particle influence on turbulent gas flow in tube. High Temp 36, 744–752 (1998)

    Google Scholar 

  5. Crowe, C.T.: On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow 26, 719–727 (2000)

    Article  MATH  Google Scholar 

  6. Zaichik, L.I., Varaksin, A.Yu.: Effect of the wake behind large particles on the turbulence intensity of carrier flow. High Temp. 37, 655–658 (1999)

    Google Scholar 

  7. Meyer, D.W.: Modelling of turbulence modulation in particle- or droplet-laden flows. J. Fluid Mech 706, 251–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Terekhov, V.I., Pakhomov, M.A.: The thermal efficiency of near-wall gas-droplets screens. I. Numer. Model. Int. J. Heat Mass Transfer 48, 1747–1759 (2005)

    Article  MATH  Google Scholar 

  9. Wang, T., Li, X.: Mist film cooling simulation at gas turbine operating conditions. Int. J. Heat Mass Transfer 51, 5305–5317 (2008)

    Article  MATH  Google Scholar 

  10. Moukalled, F., Darwish, M.: Mixing and evaporation of liquid droplets injected into an air streamflowing at all speeds. Phys. Fluids 20, 040804–1–040804-26 (2008)

    Article  MATH  Google Scholar 

  11. Cochet, M., Bazile, R., Ferret, B., Cazin S.: Evaporation of polydispersed droplets in a highly turbulent channel flow. Exp. Fluids 47, 379–394 (2009)

    Article  Google Scholar 

  12. Hardalupas, Y., Taylor, A.M.K.P., Whitelaw, J.H.: Particle dispersion in a vertical round sudden-expansion flow. Phil. Trans. R. Soc. London A 341, 411–442 (1992)

    Article  Google Scholar 

  13. Hishida, K., Nagayasu, T., Maeda, M.: Augmentation of convective heat transfer by an effective utilization of droplet inertia. Int. J. Heat Mass Transfer 38, 1773–1785 (1995)

    Article  Google Scholar 

  14. Founti, M., Klipfel, A.: Experimental and computational investigations of nearly dense two-phase sudden expansion flows. Exp. Therm. Fluid Sci. 17, 27–36 (1998)

    Article  Google Scholar 

  15. Li, F., Qi, H., You, C.F.: Phase Doppler anemometry measurements and analysis of turbulence modulation in dilute gas–solid two-phase shear flows. J. Fluid Mech. 663, 434–455 (2010)

    Article  MATH  Google Scholar 

  16. Mohanarangam, K., Tu, J.Y.: Numerical study of particle turbulence interaction in liquid-particle flows. AIChE J. 55, 1298–1302 (2009)

    Article  Google Scholar 

  17. Frawley, P., O’Mahony, A.P., Geron, M.: Comparison of Lagrangian and Eulerian simulations of slurry flows in a sudden expansion. 091301-1–91301-12 132 (2010)

  18. Pakhomov, M.A., Terekhov, V.I.: Second moment closure modelling of flow, turbulence and heat transfer in droplet-laden mist flow in a vertical pipe with sudden expansion. Int. J. Heat Mass Transfer 66, 210–222 (2013)

    Article  Google Scholar 

  19. Elghobashi, S.: On the predicting particle-laden flows. Appl. Sci. Res. 52, 309–329 (1994)

    Article  Google Scholar 

  20. Chan, C.K., Zhang, H.Q., Lau, K.S.: Numerical simulation of gas-particle flows behind a backward-facing step using an improved stochastic separated flow model. J. Comput. Mech. 27, 412–417 (2001)

    Article  MATH  Google Scholar 

  21. Sikovsky, D.Ph: Singularity of inertial particle concentration in the viscous sublayer of wall-bounded turbulent flows. Flow. Turb. Combust 92, 41–64 (2014)

    Article  Google Scholar 

  22. Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech 15, 261–291 (1983)

    Article  MATH  Google Scholar 

  23. Derevich, I.V., Zaichik, L.I.: Particle deposition from a turbulent flow. Fluid Dyn. 23, 722–729 (1988)

    Article  MATH  Google Scholar 

  24. Reeks, M.W.: Transport, mixing and agglomeration of particles in turbulent flows. Flow Turb. Combust 93, 3–25 (2014)

    Article  Google Scholar 

  25. Reeks, M.W.: On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids A 3, 446–456 (1991)

    Article  MATH  Google Scholar 

  26. Derevich, I.V.: Statistical modelling of mass transfer in turbulent two-phase dispersed flows. 1. Model development. Int. J. Heat Mass Transfer 43, 3709–3723 (2000)

    Article  MATH  Google Scholar 

  27. Mukin, R.V., Zaichik, L.I.: Non-linear stress model for two-phase turbulent flow laden with small heavy particles. Int. J. Heat Fluid Flow 33, 81–91 (2012)

    Article  Google Scholar 

  28. Fadai-Ghotbi, A., Manceau, R., Boree, J.: Revisiting URANS computations of the backward-facing step flow using second moment closures. Influence of the numerics. Flow. Turb. Combust 81, 395–410 (2008)

    Article  MATH  Google Scholar 

  29. Birouk, M., Gökalp, I.: Current status of droplet evaporation in turbulent flows. Progress Energy Combust. Sci. 32, 408–423 (2006)

    Article  Google Scholar 

  30. Maeda, M., Kiyota, H., Hishida, K.: Heat transfer to gas-solid two-phase flow in separated, reattached, and redevelopment regions. In: Grigull, U., Hahne, E., Stephan, K., Straub, J (eds.) Proc. of the 7th Int. Heat Transfer Conference, 5 Paper TF9, pp 249–254. Hemisphere Publ., Washington (1982)

Download references

Acknowledgments

This work is partially supported by the Russian Science Foundation (Project No. 14-19-00402). Authors thank Prof. Igor V. Derevich (Bauman Moscow State Technical University, Moscow) for simulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim A. Pakhomov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. The Effect of Droplets Evaporation on Turbulence Modification and Heat Transfer Enhancement in a Two-Phase Mist Flow Downstream of a Pipe Sudden Expansion. Flow Turbulence Combust 98, 341–354 (2017). https://doi.org/10.1007/s10494-016-9732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9732-7

Keywords

Navigation