Skip to main content

Advertisement

SpringerLink
Effects of Fuel Lewis Number on Localised Forced Ignition of Globally Stoichiometric Stratified Mixtures: a Numerical Investigation
Download PDF
Download PDF
  • Open Access
  • Published: 13 February 2016

Effects of Fuel Lewis Number on Localised Forced Ignition of Globally Stoichiometric Stratified Mixtures: a Numerical Investigation

  • Dipal Patel1 &
  • Nilanjan Chakraborty1 

Flow, Turbulence and Combustion volume 96, pages 1083–1105 (2016)Cite this article

  • 527 Accesses

  • 4 Citations

  • Metrics details

Abstract

The influences of fuel Lewis number L e F on localised forced ignition of globally stoichiometric stratified mixtures have been analysed using three-dimensional compressible Direct Numerical Simulations (DNS) for cases with L e F ranging from 0.8 to 1.2. The globally stoichiometric stratified mixtures with different values of root-mean-square (rms) equivalence ratio fluctuation (i.e. ϕ ′= 0.2, 0.4 and 0.6) and the Taylor micro-scale l ϕ of equivalence ratio ϕ variation (i.e. l ϕ /l f = 2.1, 5.5 and 8.3 with l f being the Zel’dovich flame thickness of the stoichiometric laminar premixed flame) have been considered for different initial rms values of turbulent velocity u ′. A pseudo-spectral method is used to initialise the equivalence ratio variation following a presumed bi-modal distribution for prescribed values of ϕ ′ and l ϕ /l f for global mean equivalence ratio 〈ϕ〉=1.0. The localised ignition is accounted for by a source term in the energy transport equation that deposits energy for a stipulated time interval. It has been observed that the maximum values of temperature and the fuel reaction rate magnitude increase with decreasing L e F during the period of external energy deposition. The initial values of L e F , u ′/S b(ϕ=1), ϕ ′ and l ϕ /l f have been found to have significant effects on the extent of burning of the stratified mixtures following localised ignition. For a given value of u ′/S b(ϕ=1), the extent of burning decreases with increasing L e F . An increase in u ′ leads to a monotonic reduction in the burned gas mass for all values of L e F in all stratified mixture cases but an opposite trend is observed for the L e F =0.8 homogeneous mixture. It has been found that an increase in ϕ ′ has adverse effects on the burned gas mass, whereas the effects of l ϕ /l f on the extent of burning are non-monotonic and dependent on ϕ ′ and L e F . Detailed physical explanations have been provided for the observed L e F , u ′/S b(ϕ=1), ϕ ′ and l ϕ /l f dependences.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Lefebvre, A.H.: Gas Turbine Combustion, 2nd edn., pp. 50–57. Taylor & Francis (1998)

  2. Ballal, D.R., Lefebvre, A.: The influence of flow parameters on minimum ignition energy and quenching distance. Proc. Combust. Inst. 15, 1473–1481 (1975)

    Article  Google Scholar 

  3. Ballal, D.R., Lefebvre, A.: Ignition and flame quenching of flowing heterogeneous fuel-air mixtures. Combust. Flame 35, 155–168 (1979)

    Article  Google Scholar 

  4. Ballal, D.R., Lefebvre, A.: A general model of spark ignition for gaseous and liquid fuel air mixtures. Proc. Combust. Inst. 18, 737–1746 (1980)

    Google Scholar 

  5. Huang, C.C., Shy, S.S., Liu, C.C., Yan, Y.Y.: A transition on minimum ignition energy for lean turbulent methane combustion in flamelets and distributed regimes. Proc. Combust. Inst. 31, 1401–1409 (2007)

    Article  Google Scholar 

  6. Poinsot, T., Candel, S., Trouvé, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995)

    Article  Google Scholar 

  7. Klein, M., Chakraborty, N., Cant, R.S.: Effects of turbulence on self-sustained combustion in premixed flame Kernels: A Direct Numerical Simulation (DNS) study, Flow Turb. Combust., (accepted) (2008)

  8. Chakraborty, N., Mastorakos, E., Cant, R.S.: Effects of turbulence on spark ignition in inhomogeneous mixtures: A Direct Numerical Simulation (DNS) study. Combust. Sci. Technol. 179(1-2), 293–317 (2007)

    Article  Google Scholar 

  9. Chakraborty, N., Mastorakos, E.: Direct Numerical Simulations of localised forced ignition in turbulent mixing layers: the effects of mixture fraction and its gradient. Flow Turb. Combust. 80, 155–186 (2008)

    Article  MATH  Google Scholar 

  10. Chakraborty, N., Hesse, H., Mastorakos, E.: Effects on fuel Lewis number on localised forced ignition of turbulent mixing layers. Flow. Turb. Combust. 84, 125–166 (2010)

    Article  MATH  Google Scholar 

  11. Wandel, A.P., Chakraborty, N., Mastorakos, E.: Direct Numerical Simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32, 2283–2290 (2009)

    Article  Google Scholar 

  12. Wandel, A.: Extinction indicators in turbulent sprays. Proc. Combust. Inst. 34, 1625–1632 (2013)

    Article  Google Scholar 

  13. Wandel, A.: Influence on scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame 161, 2679–2600 (2014)

    Google Scholar 

  14. Ahmed, S.F., Mastorakos, E.: Spark Ignition of lifted turbulent jet flames. Combust. Flame 146, 215–231 (2006)

    Article  Google Scholar 

  15. Ahmed, S.F., Balachandran, R., Mastorakos, E.: Measurements of ignition probability in turbulent non-premixed counterflow flames. Proc. Combust. Inst. 31, 1507–1513 (2007)

    Article  Google Scholar 

  16. Swaminathan, N., Grout, R., Mastorakos, E.: Direct simulation of forced ignition in stratified turbulent mixture. In: Proceedings 3 rd European Combustion Meeting. Chania, Greece (2007)

    Google Scholar 

  17. Pera, C., Chevillard, S., Reveillon, J.: Effect of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame 160, 1020–1032 (2013)

    Article  Google Scholar 

  18. Patel, D., Chakraborty, N.: Localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation. Combust. Theor. Model. 18(7), 627–651 (2014)

    Article  MathSciNet  Google Scholar 

  19. Strehlow, R.A.: Fundamentals of Combustion. International Textbook, Scranton (1968)

    Google Scholar 

  20. Glassman, I.: Combustion, 2nd edn. Academic Press, New York (1987)

    Google Scholar 

  21. Sibulkin, M., Siskind, K.S.: Numerical study of initiation of a combustion wave by an ignition kernel. Combust. Flame 69, 49–57 (1987)

    Article  Google Scholar 

  22. He, L.: Critical conditions for spherical flame initiation in mixtures with high Lewis numbers. Combust. Theor. Model. 4, 159–172 (2000)

    Article  MATH  Google Scholar 

  23. Eswaran, V., Pope, S.B.: Direct Numerical Simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506–520 (1988)

    Article  Google Scholar 

  24. Hélie, J., Trouvé, A.: Turbulent flame propagation in partially premixed combustion. Proc. Combust. Inst. 27, 891–898 (1998)

    Article  Google Scholar 

  25. Grout, R., Swaminathan, N., Cant, R.S.: Effects of compositional fluctuations on premixed flames. Combust. Theor. Model. 13, 823–852 (2009)

    Article  MATH  Google Scholar 

  26. Malkeson, S.P., Chakraborty, N.: A-priori Direct Numerical Simulation analysis of algebraic models of variances and scalar dissipation rates for Reynolds Averaged Navier Stokes Simulations for low Damköhler number turbulent partially-premixed combustion. Combust. Sci. Technol. 182, 960–999 (2010)

    Article  Google Scholar 

  27. Chen, J.H., Choudhary, A., Supinski, B. de, DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorski, N., Sankaran, R., Shende, S., Yoo, C.S.: Direct Numerical Simulations of turbulent combustion using S3D, vol. 2, p 015001 (2009)

  28. Tarrazo, E., Sanchez, A., Liñán, A., Williams, F.A.: A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147, 32–38 (2006)

    Article  Google Scholar 

  29. Poinsot, T., Echekki, T., Mungal, M.: A study of the laminar flame tip and implications for turbulent premixed combustion. Combust. Sci. Technol. 81(1–3), 45–73 (1992)

    Article  Google Scholar 

  30. Louch, D.S., Bray, K.N.C.: Vorticity in unsteady premixed flames: Vortex pair-Premixed flame interactions under imposed body forces and various degrees of heat release and laminar flame thickness. Combust. Flame 125, 1279–1309 (2001)

    Article  Google Scholar 

  31. Treurniet, T.C., Nieuwstadt, F.T.M., Boersma, B.J.: Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modeled by the G-equation. J. Fluid Mech. 565, 25–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schroll, P., Mastorakos, E., Cant, R.S.: Direct Numerical Simulations of autoignition in turbulent two phase flows. Proc. Combust. Inst. 32, 2275–2282 (2009)

    Article  Google Scholar 

  33. Bilger, R.W.: The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 23, 475–488 (1988)

    Google Scholar 

  34. Espí, C.V., Liñán, A.: Fast, non-diffusive ignition of a gaseous reacting mixture subject to a point energy source. Combust. Theor. Modell. 5, 485–498 (2001)

    Article  MATH  Google Scholar 

  35. Espí, C.V., Liñán, A.: Thermal-diffusive ignition and flame initiation by a local energy source. Combust. Theor. Modell. 6, 297–315 (2002)

    Article  Google Scholar 

  36. Neophytou, A., Mastorakos, E., Cant, R.S.: DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame 157, 1071–1086 (2010)

    Article  Google Scholar 

  37. Ballal, D.R., Lefebvre, A.H.: Ignition and flame quenching in flowing gaseous mixtures. Proc. Roy. Soc. Lond. A. 1977, 163–181

  38. Patel, D., Chakraborty, N.: Effects of energy deposition characteristics on localised forced ignition of homogeneous mixtures. Int. J. Spray and Combust. Dyn. 7, 151–174 (2015)

    Article  Google Scholar 

  39. Jenkins, K.W., Cant, R.S. DNS of Turbulent Flame Kernels. In: Liu, C., Sakell, L., Beautner, T. (eds.) : Proceeding 2 nd AFOSR Conference on DNS and LES, pp. 192–202. Kluwer, Norwell (1999)

    Google Scholar 

  40. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rogallo, R.S.: Numerical experiments in homogeneous turbulence, NASA TM81315. NASA Ames Research Center, California (1981)

    Google Scholar 

  42. Haworth, D., Blint, R., Cuenot, B., Poinsot, T.: Numerical simulation of turbulent propane-air combustion with non homogeneous reactants. Combust. Flame 121, 395–417 (2000)

    Article  Google Scholar 

  43. Jiménez, C., Cuenot, B., Poinsot, T., Haworth, D.: Direct numerical simulation and modelling for lean stratified propane-air flames. Combust. Flame 128, 1–21 (2002)

    Article  Google Scholar 

  44. Yu, R., Bai, X-S.: Direct Numerical Simulation of lean hydrogen/air auto-ignition in a constant volume enclosure. Combust. Flame 160, 1706–1716 (2010)

    Article  Google Scholar 

  45. Malkeson, S.P., Chakraborty, N.: Statistical analysis of displacement speed in turbulent stratified flames: A Direct Numerical Simulation study. Combust. Sci. Technol. 182, 1841–1883 (2010)

    Article  Google Scholar 

  46. Yamashita, H., Shimada, M., Takeno, T.: A numerical study on flame stability at a the transition point of jet diffusion flames. Proc. Combust. Inst. 26, 27–34 (1996)

    Article  Google Scholar 

  47. Vedula, P., Yeung, P.K., Fox, R.O.: Dynamics of scalar dissipation in isotropic turbulence: A numerical and modelling study. J. Fluid Mech. 433, 29–60 (2001)

    Article  MATH  Google Scholar 

  48. Birch, A.D., Brown, D.R., Dodson, M.G.: Ignition probabilities in turbulent mixing flows. Proc. Combust. Inst. 18, 1775–1780 (1981)

    Article  Google Scholar 

  49. Rashkovoksky, S.A.: Spark ignition in imperfectly mixed reactants. In: Proceedings of 1 st Mediterranean Combustion Symposium, pp. 1403–1411, Anatalya, Turkey (1999)

  50. Alvani, R.E., Fairweather, M.: Ignition characteristics of turbulent jet flows. Trans. Ichem. E. 80, 917–923 (2002)

    Article  Google Scholar 

  51. Renou, B., Samson, E., Boukhalfa, A.M.: An experimental study of freely-propagating turbulent propane-air flames in stratified inhomogeneous mixtures. Combust. Sci. Technol. 176 (1867)

Download references

Author information

Authors and Affiliations

  1. School of Mechanical and Systems Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

    Dipal Patel & Nilanjan Chakraborty

Authors
  1. Dipal Patel
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Nilanjan Chakraborty
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Nilanjan Chakraborty.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, D., Chakraborty, N. Effects of Fuel Lewis Number on Localised Forced Ignition of Globally Stoichiometric Stratified Mixtures: a Numerical Investigation. Flow Turbulence Combust 96, 1083–1105 (2016). https://doi.org/10.1007/s10494-015-9692-3

Download citation

  • Received: 15 October 2015

  • Accepted: 25 November 2015

  • Published: 13 February 2016

  • Issue Date: June 2016

  • DOI: https://doi.org/10.1007/s10494-015-9692-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ignition
  • Stratified mixture
  • Equivalence ratio
  • rms turbulent velocity
  • Direct Numerical Simulation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.