Skip to main content
Log in

A Combined Experimental and Numerical Study of Laminar and Turbulent Non-piloted Oxy-fuel Jet Flames Using a Direct Comparison of the Rayleigh Signal

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In the present study laminar and turbulent oxy-fuel jet flames are investigated both experimentally and numerically with emphasis on the direct comparison of the Rayleigh signal. The Rayleigh signal was measured for both flame setups, correcting for background light appropriately. Two downstream regions were recorded for the laminar flame and three for the turbulent flame. Equivalently, the signal was processed numerically based on the numerical species data and temperature. The laminar flame was used for validating the procedure of processing the Rayleigh signal. Both the numerical species data and the temperature are known from detailed simulations, so a predicted Rayleigh signal can easily be obtained. Further, the influence of the choice of the kinetic mechanism, radiation and diffusion model was investigated. In contrast, in the turbulent Large Eddy Simulation, the Rayleigh signal has to be computed using an appropriate turbulence-chemistry interaction model in order to obtain the Reynolds-filtered Rayleigh signal which is of non-linear nature. In the present investigation, the Rayleigh signal was incorporated in the flamelet/progress variable approach. The statistics of the experimental and numerical Rayleigh signal were then compared. The proposed procedure of directly comparing the experimental and predicted Rayleigh signal was shown to be advantageous in model validation especially in turbulent flame configurations. The procedure enables accurate model validation across an entire 2D field of view whilst using a realistic fuel-oxidizer combination and reducing experimental complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baukal, C.E., Gebhart, B.: Oxygen-enhanced/natural gas flame radiation. Int. J. Heat Mass Transf. 40(11), 2539–2547 (1997)

    Article  Google Scholar 

  2. Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., Maier, J.: Oxy-fuel coal combustion - a review of the current state-of-the-art. Int. J. Greenhouse Gas Control 5 Supplement 1(0), S16–S35 (2011)

    Article  Google Scholar 

  3. Hunger, F., Stelzner, B., Trimis, D., Hasse, C.: Flamelet-modeling of inverse rich diffusion flames. Flow Turbul. Combust. 90, 833–857 (2013)

    Article  Google Scholar 

  4. Sevault, A., Dunn, M., Barlow, R.S., Ditaranto, M.: On the structure of the near field of oxy-fuel jet flames using Raman/Rayleigh laser diagnostics. Combust. Flame, 3342–3352 (2012)

  5. Ditaranto, M., Hals, J.: Combustion instabilities in sudden expansion oxy-fuel flames. Combust. Flame 146(3), 493–512 (2006)

    Article  Google Scholar 

  6. Krishnan, S.S., Saini, M.K., Zheng, Y., Gore, J.P.: Radiation properties of oxygen-enhanced normal and inverse diffusion flames. J. Heat Transf. 134(2), 022701 (2012)

    Article  Google Scholar 

  7. Stelzner, B., Hunger, F., Voss, S., Keller, J., Hasse, C., Trimis, D.: Experimental and numerical study of rich inverse diffusion flame structure. Proc. Combust. Inst. 34, 1045–1055 (2013a)

    Article  Google Scholar 

  8. Kim, H.K., Kim, Y., Lee, S.M., Ahn, K.Y.: Studies on combustion characteristics and flame length of turbulent oxy-fuel flames. Energy Fuels 21(3), 1459–1467 (2007)

    Article  Google Scholar 

  9. Stelzner, B., Hunger, F., Laugwitz, A., Gräbner, M., Voss, S., Uebel, K., Schurz, M., Schimpke, R., Weise, S., Krzack, S., Trimis, D., Hasse, C., Meyer, B.: Development of an inverse diffusion partial oxidation flame and model burner contributing to the development of 3rd generation coal gasifiers. Fuel Process. Technol. 110, 33–45 (2013b)

    Article  Google Scholar 

  10. Park, J., Park, J.S., Kim, H.P., Kim, J.S., Kim, S.C., Choi, J.G., Cho, H.C., Cho, K.W., Park, H.S.: No emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy Fuels 21(1), 121–129 (2007)

    Article  Google Scholar 

  11. Wang, L., Endrud, N.E., Turns, S.R., D’Agostini, M.D., Slavejkov, A.G.: A study of the influence of oxygen index on soot, radiation, and emission characteristics of turbulent jet flames. Combust. Sci. Technol. 174(8), 45–72 (2002)

    Article  Google Scholar 

  12. Linow, S., Dreizler, A., Janicka, J., Hassel, E.P.: Measurement of temperature and concentration in oxy-fuel flames by raman/rayleigh spectroscopy. Meas. Sci. Technol. 13(12), 1952 (2002)

    Article  Google Scholar 

  13. Glarborg, P., Bentzen, L.L.B.: Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuel 22(1), 291–296 (2007)

    Article  Google Scholar 

  14. Samaniego, J.M., Mantel, T.: Fundamental mechanisms in premixed turbulent flame propagation via flame—vortex interactions: Part I: experiment. Combust. Flame 118(4), 537–556 (1999)

    Article  Google Scholar 

  15. Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31(1), 49–75 (2007)

    Article  MathSciNet  Google Scholar 

  16. Böhm, B., Brübach, J., Ertem, C., Dreizler, A.: Experiments for combustion-LES validation. Flow Turbul. Combust. 80(4), 507–529 (2008)

    Article  Google Scholar 

  17. Bergmann, V., Meier, W., Wolff, D., Stricker, W.: Application of spontaneous raman and rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl. Phys. B 66(4), 489–502 (1998)

    Article  Google Scholar 

  18. Dibble, R.W., Hollenbach, R.E.: Laser rayleigh thermometry in turbulent flames. Proc. Combust. Inst. 18(1), 1489–1499 (1981)

    Article  Google Scholar 

  19. Stepowski, D., Cabot, G.: Single-shot temperature and mixture fraction profiles by rayleigh scattering in the development zone of a turbulent diffusion flame. Combust. Flame 88(34), 296–308 (1992)

    Article  Google Scholar 

  20. Fuest, F., Barlow, R.S., Chen, J.Y., Dreizler, A.: Raman/Rayleigh scattering and CO-LIF measurements in laminar and turbulent jet flames of dimethyl ether. Combust. Flame 159(8), 2533–2562 (2012)

    Article  Google Scholar 

  21. Connelly, B., Bennett, B., Smooke, M., Long, M.: A paradigm shift in the interaction of experiments and computations in combustion research. Proc. Combust. Inst. 32(1), 879–886 (2009)

    Article  Google Scholar 

  22. Coriton, B., Zendehdel, M., Ukai, S., Kronenburg, A., Stein, O.T., Im, S.K., Gamba, M., Frank, J.H.: Imaging measurements and LES-CMC modeling of a partially-premixed turbulent dimethyl ether/air jet flame. Proc. Combust. Inst. (2014)

  23. Popp, S., Hunger, F., Hartl, S., Messig, D., Coriton, B., Frank, J.H., Fuest, F., Hasse, C.: LES flamelet-progress variable modelling and measurements of a turbulent partially-premixed dimethyl ether jet flame. Combust. Flame 162(8), 3016–3029 (2015)

    Article  Google Scholar 

  24. Schießl, R., Kaiser, S., Long, M., Maas, U.: Application of reduced state spaces to laser-based measurements in combustion. Proc. Combust. Inst. 32(1), 887–894 (2009)

    Article  Google Scholar 

  25. Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D.: Chemkin-pro release 15082 (2008)

  26. Du, D.X., Axelbaum, R.L., Law, C.K.: The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Proc. Combust. Inst. 23, 1501–1507 (1991)

    Article  Google Scholar 

  27. Mazas, A.N., Lacoste, D.A., Schuller, T.: Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H2O. ASME Conference Proceedings 2010(43970), 411–421 (2010)

    Google Scholar 

  28. Dunn, M.J.: Finite-rate chemistry effects in turbulent premixed combustion. University of Sydney, Ph.D. thesis (2008)

    Google Scholar 

  29. Papageorge, M., McManus, T., Fuest, F., Sutton, J.: Recent advances in high-speed planar rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality. Appl. Phys. B 115(2), 197–213 (2014)

    Article  Google Scholar 

  30. Hain, R., Köhler, C., Tropea, C.: Comparison of CCD, CMOS and intensified cameras. Exp. Fluids 42(3), 403–411 (2007)

    Article  Google Scholar 

  31. Messig, D., Hunger, F., Keller, J., Hasse, C.: Evaluation of radiation modeling approaches for non-premixed flamelets considering a laminar methane air flame. Combust. Flame 160, 251–264 (2013)

    Article  Google Scholar 

  32. Garten, B., Hunger, F., Messig, D., Stelzner, B., Trimis, D., Hasse, C.: Detailed radiation modeling of a partial-oxidation flame. Int. J. Therm. Sci. 87, 68–84 (2015)

    Article  Google Scholar 

  33. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., William C. Gardiner, J., Lissianski, V.V., Qin, Z.: Gas research institute. http://www.me.berkeley.edu/gri_mech/version30 (2012)

  34. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley (2012)

  35. Ern, A., Giovangigli, V.: Fast and accurate multicomponent transport property evaluation. J. Comput. Phys. 120, 105–116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Grosshandler, W.L.: RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment. Tech. rep., NIST technical note 1402 (1993)

  37. Barlow, R.S., Karpetis, A.N., Frank, J.H., Chen, J.Y.: Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127, 2102–2118 (2001)

    Article  Google Scholar 

  38. International workshop on measurement and computation of turbulent flames. http://www.sandia.gov/TNF/abstract.html (2012)

  39. Modest, M.: Radiative Heat Transfer, 3rd edn. Academic Press (2013)

  40. Hottel, H.C., Sarofim, A.F.: Radiative Transfer. McGraw-Hill, New York (1967)

    Google Scholar 

  41. Kangwanpongpan, T., França, F.H.R., da Silva, R.C., Schneider, P.S., Krautz, H.J.: New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database. Int. J. Heat Mass Transf. 55, 7419–7433 (2012)

    Article  Google Scholar 

  42. Pierce, C., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  44. Kempf, A., Flemming, F., Janicka, J.: Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30(1), 557–565 (2005)

    Article  Google Scholar 

  45. Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids (1994-present) 12(10), 2541–2554 (2000)

    Article  MATH  Google Scholar 

  46. Forkel, H., Janicka, J.: Large-eddy simulation of a turbulent hydrogen diffusion flame. Flow Turbul. Combust. 65(2), 163–175 (2000)

    Article  MATH  Google Scholar 

  47. Peters, N.: Laminar Flamelet Concepts in Turbulent Combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)

    Article  Google Scholar 

  48. Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114(1-2), 26–40 (1998)

    Article  Google Scholar 

  49. Ihme, M., Shunn, L., Zhang, J.: Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231(23), 7715–7721 (2012)

    Article  Google Scholar 

  50. Niu, Y.S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combust. Flame 160(4), 776–785 (2013)

    Article  Google Scholar 

  51. Prüfert, U., Hartl, S., Hunger, F., Messig, D., Eiermann, M., Hasse, C.: A constrained control approach for the automated choice of an optimal progress variable for chemistry tabulation. Flow Turbul. Combust. 94(3), 593–617 (2015)

    Article  Google Scholar 

  52. Weise, S., Hasse, C.: Reducing the memory footprint in large eddy simulations of reactive flows. Parallel Comput. 49, 50–65 (2015)

    Article  MathSciNet  Google Scholar 

  53. Sutton, G., Levick, A., Edwards, G., Greenhalgh, D.: A combustion temperature and species standard for the calibration of laser diagnostic techniques. Combust. Flame 147(1–2), 39–48 (2006)

    Article  Google Scholar 

  54. McManus, T.A., Papageorge, M.J., Fuest, F., Sutton, J.A.: Spatio-temporal characteristics of temperature fluctuations in turbulent non-premixed jet flames. Proc. Combust. Inst., 35 (2014)

  55. Kohse-Höinghaus, K.: Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Prog. Energy Combust. Sci. 20(3), 203–279 (1994)

    Article  Google Scholar 

  56. Zeißler, R.: Modellierung der Gasphasenreaktion bei der autothermen katalytischen Erdgasspaltung unter hohen Drucken̈. Dissertation, TU Bergakademie Freiberg (2005)

  57. Rasmussen, C.L., Rasmussen, A.E., Glarborg, P.: Sensitizing effects of nox on ch4 oxidation at high pressure. Combust. Flame 154(3), 529–545 (2008)

    Article  Google Scholar 

  58. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K.: High-temperature combustion reaction model of H2/CO/C1-C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Hunger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunger, F., Zulkifli, M.F., Williams, B.A.O. et al. A Combined Experimental and Numerical Study of Laminar and Turbulent Non-piloted Oxy-fuel Jet Flames Using a Direct Comparison of the Rayleigh Signal. Flow Turbulence Combust 97, 231–262 (2016). https://doi.org/10.1007/s10494-015-9681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9681-6

Keywords

Navigation