Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization


The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

This is a preview of subscription content, access via your institution.


  1. 1.

    Meier, W., Duan, X.R., Weigand, P., Stricker, W., Aigner, M.: Investigations of swirl flames in a gas turbine model combustor - I. flow field, structures, temperature and species distributions. Combust. Flame 144, 225–236 (2006)

    Article  Google Scholar 

  2. 2.

    Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.P.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)

    Article  MATH  Google Scholar 

  3. 3.

    Komarek, T., Tay-Wo-Chong, L., Zellhuber, M., Huber, A., Polifke, W.: Modeling the Effect of Heat Loss on Flame Stabilization in Shear Layers, Int. Conf. on Jets, Wakes and Separated Flows, ICJWSF, Berlin (2008)

  4. 4.

    Tay-Wo-Chong, L., Komarek, T., Zellhuber, M., Lenz, J., Hirsch, C., Polifke, W.: Influence of Strain and Heat Loss on Flame Stabilization in a Non-adiabatic Combustor. Number 810366 in Proceedings of European Combustion Meeting, Vienna Combustion Institute (2009)

  5. 5.

    Tay-Wo-Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.: Identification of flame transfer functions from LES of a premixed swirl burner. Number GT2010-22769. In: Proceeding of ASME Turbo Expo 2010, Glasgow, UK, Glasgow, UK, June 14-18. ASME., p. 13 (2010)

  6. 6.

    Poinsot, T., Veynante, D.: Theoretical and numerical combustion. In: Edwards, R.T., Philadelphia. 2nd edn. (2005)

  7. 7.

    Darabiha, N., Candel, S.M., Giovangigli, V., Smooke, M.D.: Extinction of strained premixed propane-air flames with complex chemistry. Combust. Sci. Technol. 60, 267–285 (1988)

    Article  Google Scholar 

  8. 8.

    Libby, P.A., Williams, F.A.: Strained premixed laminar flames under nonadiabatic conditions. Combust. Sci. Technol. 31(1), 1–42 (1983)

    Article  Google Scholar 

  9. 9.

    Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction of turbulent counterflow flames with reactants diluted by hot products. Combust. Flame 102, 101–114 (1995)

    Article  Google Scholar 

  10. 10.

    Smooke, M.D., Crump, J., Seshadri, K., Giovangigli, V.: Comparison between experimental measurements and numerical calculations of the structure of counterflow, diluted, methane-air, premixed flames. Symp. (Int.) Combust. 23, 463–470 (1991)

    Article  Google Scholar 

  11. 11.

    Cant, R.S., Bray, K.N.C.: Strained laminar flamelet calculations of premixed turbulent combustion in a closed vessel. Symp. (Int.) Combust. 22(1), 791–799 (1989)

    Article  Google Scholar 

  12. 12.

    Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Reports 14(7), 993–1025 (1995)

    Google Scholar 

  13. 13.

    Tay-Wo-Chong, L., Polifke, W.: Large eddy simulation based study of the influence of thermal boundary condition and combustor confinement on premix flame transfer functions. J. Eng. Gas Turbines Power 135(2), 021502 (2013)

    Article  Google Scholar 

  14. 14.

    Keppeler, R., Pfitzner, M., Tay-Wo-Chong, L., Komarek, T., Polifke, W.: Including heat loss and quench effects in algebraic models for large eddy simulation of premixed combustion. Number GT2012-68689 in Proc. of ASME Turbo Expo Glasgow, UK. ASME, June 11th-15th 2012 (2010)

  15. 15.

    Kaess, R., Poinsot, T., Polifke, W.: Determination of the Stability Map of a Premix Burner based on Flame Transfer Functions computed with Transient CFD. Number 810304 in Proceedings of European Combustion Meeting, Vienna, Combustion Institute (2009)

  16. 16.

    Chterev, I., Foley, C.W., Foti, D., Kostka, S., Caswell, A.W., Jiang, N., Lynch, A., Noble, D.R., Menon, S., Seitzman, J.M., et al.: Flame and flow topologies in an annular swirling flow. Combust. Sci. Technol. 186(8), 1041–1074 (2014)

    Article  Google Scholar 

  17. 17.

    Guiberti, T.F., Durox, D., Scouflaire, P., Schuller, T.: Impact of heat loss and hydrogen enrichment on the shape of confined swirling flames. Proc. Combust. Inst. 35(2), 1385–1392 (2015)

    Article  Google Scholar 

  18. 18.

    Mejia, D., Selle, L., Bazile, R., Poinsot, T.: Wall-temperature effects on flame response to acoustic oscillations. Proc. Combust. Inst. 35(3), 3201–3208 (2015)

    Article  Google Scholar 

  19. 19.

    Williams, F.A.: Combustion Theory. Benjamin/Cummings, Menlo Park, CA (1985)

  20. 20.

    Im, H.G., Chen, J.H.: Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flames. Proc. Combust. Inst. 28(2), 1833–1840 (2000)

    Article  Google Scholar 

  21. 21.

    Poinsot, T.J., Haworth, D.C., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95(1–2), 118–132 (1993)

    Article  Google Scholar 

  22. 22.

    Ishizuka, S., Law, C.K.: An experimental study on extinction and stability of stretched premixed flames. Symp. Combust. 19(1), 327–335 (1982). Nineteenth Symposium (International) on Combustion

    Article  Google Scholar 

  23. 23.

    Yahagi, Y., Ueda, T., Mizomoto, M.: Extinction mechanism of lean methanes/air turbulent premixed flame in a stagnation point flow. Symp. (Int.) Combust. 24(1), 537–542 (1992). Twenty-Fourth Symposium on Combustion

    Article  Google Scholar 

  24. 24.

    Bruneaux, G., Poinsot, T., Ferziger, J.H. : Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)

    Article  MATH  Google Scholar 

  25. 25.

    Al-Shaalan, T.M., Rutland, C.: Turbulent scalar transport, and reaction rates in flame-wall interaction. Symp. (Int.) Combust. 27, 793–799 (1998)

    Article  Google Scholar 

  26. 26.

    Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)

    Article  Google Scholar 

  27. 27.

    Krediet, H.J., Beck, C.H., Krebs, W., Schimek, S., Paschereit, C.O., Kok, J.B.W.: Identification of the flame describing function of a premixed swirl flame from LES. Combust. Sci. Technol. 184(7–8), 888–900 (2012)

    Article  Google Scholar 

  28. 28.

    Proch, F., Kempf, A.M.: Modeling heat loss effects in the large Eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 35(3), 3337–3345 (2015)

    Article  Google Scholar 

  29. 29.

    Schmid, H., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame 113, 79–91 (1998)

    Article  Google Scholar 

  30. 30.

    Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11(1), 1–59 (1985)

    Article  Google Scholar 

  31. 31.

    Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flow. J. Physique Lettres 44, L1–L12 (1983)

    Article  Google Scholar 

  32. 32.

    Samaniego, J.M., Mantel, T.: Fundamental mechanisms in premixed turbulent flame propagation via flame-vortex interactions, Part I: experiment. Combust. Flame 118(4), 537–556 (1999)

    Article  Google Scholar 

  33. 33.

    Sun, C.J., Law, C.K.: On the nonlinear response of stretched premixed flames. Combust. Flame 121(1–2), 236–248 (2000)

    Article  Google Scholar 

  34. 34.

    Chung, S.H., Law, C.K.: An integral analysis of the structure and propagation of stretched premixed flames. Combust. Flame 72(3), 325–336 (1988)

    Article  Google Scholar 

  35. 35.

    Poinsot, T., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81(1), 45–73 (1992)

    Article  Google Scholar 

  36. 36.

    Davis, S.G., Quinard, J., Searby, G.: Determination of markstein numbers in counterflow premixed flames. Combust. Flame 130(1-2), 112–122 (2002)

    Article  Google Scholar 

  37. 37.

    Dixon-Lewis, G.: Laminar premixed flame extinction limits. I combined effects of stretch and upstream heat loss in the twin-flame unburnt-to-unburnt opposed flow configuration. Proc. R. Soc. A 452, 1857–1884 (1996)

    Article  MATH  Google Scholar 

  38. 38.

    Kostiuk, L.W., Bray, K.N.C., Chew, T.C.: Premixed turbulent combustion in counterflowing streams. Combust. Sci. Technol. 64, 233–241 (1989)

    Article  Google Scholar 

  39. 39.

    Law, C.K., Zhu, D.L., Yu, G.: Propagation and extinction of stretched premixed flames. Symp. (Int.) Combust. 21(1), 1419–1426 (1988). Twenty-First Symposuim (International on Combustion)

    Article  Google Scholar 

  40. 40.

    Bradley, D., Lau, A.K.C.: The mathematical modelling of premixed turbulent combustion. Pure and Appl. Chem. 62(5), 803–814 (1990)

    Article  Google Scholar 

  41. 41.

    Cant, R.S., Rogg, B., Bray, K.N.C.: On laminar flamelet modelling of the mean reaction rate in a premixed turbulent flame. Combust. Sci. Technol. 69, 53–61 (1990)

    Article  Google Scholar 

  42. 42.

    Dixon-Lewis, G.: Structure of laminar flames. Symp. (Int.) Combust. 23(1), 305–324 (1991). Twenty-Third Symposium (International) on Combustion

    Article  Google Scholar 

  43. 43.

    Rogg, B.: Numerical analysis of strained premixed ch4-air flames, with detailed chemistry, Technical Report CUED/A-THERMO/TR22, Cambridge University (1988)

  44. 44.

    Rogg, B.: Response and flamelet structure of stretched premixed methane—air flames. Combust. Flame 73(1), 45–65 (1988)

    Article  Google Scholar 

  45. 45.

    Mantel, T., Samaniego, J.M.: Fundamental mechanisms in premixed turbulent flame propagation via vortex-flame interactions Part II: numerical simulation. Combust. Flame 118(4), 557–582 (1999)

    Article  Google Scholar 

  46. 46.

    Law, C. K.: Combustion physics. Cambridge University Press, New York (2006)

    Google Scholar 

  47. 47.

    Polifke, W., Flohr, P., Brandt, M.: Modeling of inhomogeneously premixed combustion with an extended TFC model. J. Eng. Gas Turbines Power 124(1), 58–65 (2002)

    Article  Google Scholar 

  48. 48.

    Rogg, B., Wang, W.: RUN-1DL the laminar flame and flamelet code. User Manual. Lehrstuhl für Stromungsmechanik, Ruhr-Universität Bochum, vol. D44780. Bochum, Germany (2001)

    Google Scholar 

  49. 49.

    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Qin, Z., Lissianski, V.V.: GRI-Mech 3.0.

  50. 50.

    Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAND89-8009B, Sandia National Laboratories (1989)

    Google Scholar 

  51. 51.

    van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)

    Article  Google Scholar 

  52. 52.

    Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  53. 53.

    Kolmogorov, A.N., Petrovskii, I.G., Piskunov, N.S.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskovo Gos. Univ 1, 1–72 (1937)

    Google Scholar 

  54. 54.

    Brutscher, T., Zarzalis, N., Bockhorn, H.: An experimentally based approach for the space-averaged laminar burning velocity used for modeling premixed turbulent combustion. Proc. Combust. Inst. 29, 1825–1832 (2002)

    Article  Google Scholar 

  55. 55.

    Wäsle, J.: Vorhersage der Lärmemission turbulenter vormischflammen, PhD Thesis, Technische Universität München (2007)

  56. 56.

    Bray, K.N.C., Cant, R.S.: Some applications of kolmogorov’s turbulence research in the field of combustion. In: Royal Society (London), Proceedings, Series A-Mathematical and Physical Sciences, vol. 434, pp. 217–240 (1991)

  57. 57.

    Bradley, D., Gaskell, P.H., Sedaghat, A., Gub, X.J.: Generation of pdfs for flame curvature and for flame stretch rate in premixed turbulent combustion. Combust. Flame 135, 503–523 (2003)

    Article  Google Scholar 

  58. 58.

    Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86, 311–332 (1991)

    Article  Google Scholar 

  59. 59.

    Veynante, D., Piana, J., Duclos, J.M., Martel, C.: Experimental analysis of flame surface density models for premixed turbulent combustion. Symp. (Int.) Combust. 26(1), 413–420 (1996)

    Article  Google Scholar 

  60. 60.

    Duclos, J.M., Veynante, D., Poinsot, T.: Comparison of flamelet models for premixed turbulent combustion. Combust. Flame 95, 101–117 (1993)

    Article  Google Scholar 

  61. 61.

    Komarek, T., Polifke, W.: Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Eng. Gas Turbines Power 132, 061503 (2010)

    Article  Google Scholar 

  62. 62.

    Leonard, B.P., Mokhtari, S.: Ultra-sharp nonoscillatory convection schemes for high-speed steady multidimensional flow, Technical Report NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Center (1990)

  63. 63.

    Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147–163 (1984)

    MATH  Google Scholar 

  64. 64.

    Fluent 12 User Manual (2009)

  65. 65.

    Davis, S.G., Quinard, J., Searby, G.: Markstein numbers in counterflow, methane- and propane- air flames: a computational study. Combust. Flame 130(1–2), 123–136 (2002)

    Article  Google Scholar 

  66. 66.

    Bechtold, J.K., Matalon, M.: The dependence of the Markstein length on stoichiometry. Combust. Flame 127(1–2), 1906–1913 (2001)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wolfgang Polifke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tay-Wo-Chong, L., Zellhuber, M., Komarek, T. et al. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization. Flow Turbulence Combust 97, 263–294 (2016).

Download citation


  • Turbulent combustion
  • Premixed flame
  • Strain rate
  • Heat loss