Skip to main content
Log in

A Gas-Kinetic Scheme for Turbulent Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

RANS simulations may not provide accurate results for all flow conditions. The interaction between a shock wave and a turbulent boundary layer is an example which may still be difficult to simulate accurately. Beside the inability to reproduce physical phenomena such as shock unsteadiness, the argument is put forward that the conventional numerical schemes, based on the Navier-Stokes equations, may be unable to generate a physically consistent turbulent stress tensor in the presence of large unresolved scales of motion. A large ratio between unresolved and resolved scales of motion, a sort of Knudsen number based on turbulent fluctuations, might introduce inaccuracies for which the turbulence model is not accountable. In order to improve the accuracy of RANS simulations, researchers have suggested various ad-hoc modifications to standard turbulence models which limit eddy viscosity or the turbulent stress tensor in the presence of strong gradients. Gas-kinetic schemes might be able to improve RANS predictions in shocklayers by removing or limiting the errors caused by the large scales ratio. These schemes are a class of their own; in the framework of a finite-volume or finite-elements discretizations, they model the numerical fluxes on the basis of the Boltzmann equation instead of the Navier-Stokes equations as is conventionally done. In practical terms, these schemes provide a higher accuracy and, more importantly, an in-built “multiscalar” mechanism, i.e. the ability to adjust to the size of unresolved scales of motion. This property makes them suitable for shock-capturing and rarefied flow. Gas-kinetic scheme may be coupled to a conventional RANS turbulence model; it is shown that the turbulent stress tensor is naturally adjusted as a function of the unresolved-to-resolved scales ratios and achieves a higher physical consistency than conventional schemes. The simulations shown - well-known benchmark cases with strong shock-boundary layer interactions - have been obtained with a standard two-equation turbulence model (k- ω). It is shown that the gas-kinetic scheme provides good quality predictions, where conventional schemes with the same turbulence model are known to fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alder, B.J., Wainwright, T.: Studies in molecular dynamics. i. general method. J. Chem. Phys. 31(2), 459–466 (1959)

    Article  MathSciNet  Google Scholar 

  2. Babinsky, H., Harvey, J.K.: Shock wave-boundary-layer interactions. Cambridge University Press New York (2011)

  3. Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  4. Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows (1994)

  5. Bookey, P., Wyckham, C., Smits, A.: Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA Paper No. 2005–4899 (2005)

  6. Cercignani, C.: The Boltzmann equation and its applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  7. Cercignani, C.: Rarefied gas dynamics: from basic concepts to actual calculations. Cambridge University Pracy, Cambridge (2000)

    MATH  Google Scholar 

  8. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633), 633–636 (2003)

    Article  Google Scholar 

  9. Chen, H., Orszag, S., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519(1), 301–314 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chou, S., Baganoff, D.: Kinetic flux–vector splitting for the Navier–Stokes equations. J. Comput. Phys. 130(2), 217–230 (1997)

    Article  MATH  Google Scholar 

  11. Coleman, G., Stollery, J.: Heat transfer from hypersonic turbulent flow at a wedge compression corner. J. Fluid Mech. 56(04), 741–752 (1972)

    Article  Google Scholar 

  12. Cook, P., McDonald, M., Firman, M.: Aerofoil RAE 2822–pressure distributions, and boundary layer andwake measurements. Experimental data base for computer program assessment. AGARD Advisory (1979)

  13. Délery, J., Marvin, J., Reshotko, E.: Shock-wave boundary layer interactions. AGARDograph 280 (1986)

  14. Dolling, D.S., Erengil, M.E.: Unsteady wave structure near separation in a Mach 5 compression rampinteraction. AIAA J. 29(5), 728–735 (1991)

    Article  Google Scholar 

  15. Edwards, J.R.: Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results. Prog. Aerosp. Sci. 44 (6), 447–465 (2008)

    Article  Google Scholar 

  16. Goldberg, U., Peroomian, O., Chakravarthy, S.: Application of the k-e-R Turbulence Model to Wall-Bounded Compressive Flows. AIAA Paper No. 1998–0323 (1998)

  17. Hellsten, A.K.: New advanced kw turbulence model for high-lift aerodynamics. AIAA J. 43(9), 1857–1869 (2005)

    Article  Google Scholar 

  18. Li, Q., Fu, S., Xu, K.: Application of gas-kinetic scheme with kinetic boundary conditions in hypersonic flow. AIAA J. 43(10), 2170–2176 (2005)

    Article  Google Scholar 

  19. Li, Q., Xu, K., Fu, S.: A high-order gas-kinetic Navier–Stokes flow solver. J. Comput. Phys. 229(19), 6715–6731 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liao, W., Luo, L., Xu, K.: Gas-kinetic scheme for continuum and near-continuum hypersonic flows. J. Spacecr. Rocket. 44(6), 1232–1240 (2007)

    Article  Google Scholar 

  21. Mandal, J., Deshpande, S.: Kinetic flux vector splitting for Euler equations. Comput. Fluids 23(2), 447–478 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. May, G., Srinivasan, B.: An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow. J. Comput. Phys. 220(2), 856–878 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Menter, F.R.: Improved two-equation k-omega turbulence models for aerodynamic flows. NASA STI/Recon. Tech. Report N 93(22), 809 (1992)

    Google Scholar 

  24. Menter, F.R., Rumsey, C.L.: Assessment of two-equation turbulence models for transonic flows. American Institute of Aeronautics and Astronautics (1994)

  25. Nordsieck, A., Hicks, B.: Monte carlo evaluation of the boltzmann collision integral. In: Proceedings of 5th International Symposium on Rarefied Gas Dynamics, pp 695–710. Academic Press (1967)

  26. Ohwada, T., Xu, K.: The kinetic scheme for the full-Burnett equations. J. Comput. Phys. 201(1), 315–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405 (1964)

    Article  Google Scholar 

  28. Righi, M.: A finite-volume gas-kinetic method for the solution of the Navier-Stokes equations, vol. (117) (2013)

  29. Righi, M.: A modified gas-kinetic scheme for turbulent flow. Commun. Comput. Phys. 16(1), 239–263 (2014)

    MathSciNet  Google Scholar 

  30. Roy, C.J., Blottner, F.G.: Review and assessment of turbulence models for hypersonic flows. Progress Aerosp. Sci. 42(7), 469–530 (2006)

    Article  Google Scholar 

  31. Rubinstein, R., Barton, J.M.: Nonlinear reynolds stress models and the renormalization group. Phys. Fluids A: Fluid Dyn. (1989-1993) 2(8), 1472–1476 (1990)

    Article  MATH  Google Scholar 

  32. Schülein, E.: Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA J. 44(8), 1732–1741 (2006)

    Article  Google Scholar 

  33. Settles, G., Fitzpatrick, T., Bogdonoff, S.: Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 17(6), 579–585 (1979)

    Article  Google Scholar 

  34. Settles, G., Vas, I., Bogdonoff, S.: Details of a shock-separated turbulent boundary layer at a compression corner. AIAA J. 14(12), 1709–1715 (1976)

    Article  Google Scholar 

  35. Spaid, F.W., Frishett, J.C.: Incipient separation of a supersonic, turbulent boundary layer, including effects of heat transfer. AIAA J. 10(7), 915–922 (1972)

    Article  Google Scholar 

  36. Speziale, C.G.: On nonlinear kl and k- ε models of turbulence. J. Fluid Mech. 178, 459–475 (1987)

    Article  MATH  Google Scholar 

  37. Tcheremissine, F.G.: A method for direct numerical integration of boltzmann equation. In: Numerical Method in the Theory of Gases, pp 43–63. USSR Academy Science (1969)

  38. Wallin, S., Johansson, A.: A new explicit algebraic Reynolds stress turbulence model for 3 D flow. In: Symposium on Turbulent Shear Flows, 11 th, pp 13–13, Grenoble, France (1997)

  39. Wallin, S., Johansson, A.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd. DCW Industries, Inc., La Canada CA (2006)

  41. Wilcox, D.C.: Formulation of the kw turbulence model revisited. AIAA J. 46 (11), 2823–2838 (2008)

    Article  Google Scholar 

  42. Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. VKI, Computational Fluid Dynamics, Annual Lecture Series, 29th. Rhode-Saint-Genese, Belgium (1998)

    Google Scholar 

  43. Xu, K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171(1), 289–335 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Xu, K., He, X., Cai, C.: Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations. J. Comput. Phys. 227(14), 6779–6794 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Xu, K., Huang, J.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229(20), 7747–7764 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Xu, K., Mao, M., Tang, L.: A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys. 203(2), 405–421 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Xu, K., Prendergast, K.: Numerical Navier-Stokes solutions from gas kinetic theory. J. Comput. Phys. 114(1), 9–17 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Xuan, L., Xu, K.: A new gas-kinetic scheme based on analytical solutions of the BGK equation. Journal Computer Physics (2012)

  49. Yen, S.: Numerical solution of the nonlinear boltzmann equation for nonequilibrium gas flow problems. Ann. Rev. Fluid Mech. 16(1), 67–97 (1984)

    Article  Google Scholar 

  50. Yoshizawa, A.: Statistical modeling of a transport equation for the kinetic energy dissipation rate. Phys. Fluids 30, 628–631 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Righi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righi, M. A Gas-Kinetic Scheme for Turbulent Flow. Flow Turbulence Combust 97, 121–139 (2016). https://doi.org/10.1007/s10494-015-9677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9677-2

Keywords

Navigation