On the Capability of PIV-Based Wall Pressure Estimation for an Impinging Jet Flow


A PIV-based pressure estimation methodology is used to compute the wall pressure from the velocity field of a turbulent impinging jet flow. A simplified formulation (2D-2C) is applied to velocity fields issued from PIV data. The ability of the method to qualitatively estimate the wall pressure signature of a 3D unsteady impinging jet flow using only two velocity components in a plane is demonstrated. Nevertheless, the 2D flow assumption used in the context of planar measurements involves an underestimation of the wall pressure values all along the radial direction. The formulation based on the full integral formalism (3D-3C), computed from DNS data without any assumption on the flow, provides a reference solution. The contributions of the surface and volume integrals to the pressure coefficient are assessed. It is shown that the most important contribution to the wall pressure comes from the volume integral. Then the underestimation observed for the simplified formulation is mostly linked with the assumptions considered for the source term computation. The effect of each assumption is quantitatively analysed with the help of the DNS data and some ways to improve the simplified methodology are finally proposed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Blake, W.: Mechanics of flow-induced sound and vibration. Vol I: General concepts and elementary sources. Vol II: Complex flow-structure interactions. Applied Mathematics and Mechanics. Academic, New-York (1986)

    Google Scholar 

  2. 2.

    Charonko, J., King, C.V., Smith, B.L., Vlachos, P.P.: Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol. 21(10), 105,401 (2010)

    Article  Google Scholar 

  3. 3.

    Crow, S., Champagne, F.: Orderly structure in turbulence. J. Fluid Mech. 48, 547–591 (1971)

    Article  Google Scholar 

  4. 4.

    Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.E.: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int. J. Heat Fluid Flow 50, 177–187 (2014)

    Article  Google Scholar 

  5. 5.

    Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.E.: Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362–394 (2015)

    Article  Google Scholar 

  6. 6.

    De Kat, R., Van Oudheusden, B.: Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 52(5), 1089–1106 (2012)

    Article  Google Scholar 

  7. 7.

    Didden, N., Ho, C.M.: Unsteady separation in a boudary layer produced by an impinging jet. J. Fluid Mech. 160, 235–256 (1985)

    Article  Google Scholar 

  8. 8.

    El Hassan, M., Assoum, H.H., Sobolik, V., Vétel, J., Abed-Meraim, K., Garon, A., Sakout, A.: Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 52(6), 1475–1489 (2012)

    Article  Google Scholar 

  9. 9.

    Elsinga, G.E., Scarano, F., Wieneke, B., Van Oudheusden, B.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  10. 10.

    Gauntner, J., Livingood, J., Hrycak, P.: Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. Tech. rep., NASA (1970)

  11. 11.

    George, W., Hussein, H.: Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)

    Article  MATH  Google Scholar 

  12. 12.

    Goldstein, R., Franchett, M.: Heat transfer from a flat surface to an oblique impinging jet. ASME J. Heat Transf. 110, 84–90 (1988)

    Article  Google Scholar 

  13. 13.

    Hadziabdic, M., Hanjalic, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221–260 (2008)

    Article  MATH  Google Scholar 

  14. 14.

    Han, B., Goldstein, R.: Jet-impingement heat transfer in gas turbine systems. Ann. N. Y. Acad. Sci. 934(1), 147–161 (2001)

    Article  Google Scholar 

  15. 15.

    Hussain, A., Zaman, K.: The ’preferred mode’ of the axisymmetric jets. J. Fluid Mech. 110, 39–71 (1981)

    Article  Google Scholar 

  16. 16.

    Jambunathan, K., Lai, R., Moss, A., Button, B.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13, 106–115 (1992)

    Article  Google Scholar 

  17. 17.

    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000)

    Google Scholar 

  18. 18.

    de Kat, R., van Oudheusden, B., Scarano, F.: Instantaneous pressure field determination in a 3d flow using time resolved thin volume tomographic-piv. In: Proceedings of the 8th international symposium on particle image velocimetryPIV09, Melbourne (2009)

  19. 19.

    Keane., R, Adrian, R.: Optimization of particle image velocimeters. part i: Double pulsed systems. Meas. Sci. Technol 1, 1202–1215 (1990)

    Article  Google Scholar 

  20. 20.

    Koschatzky, V., Overmars, E., Boersma, B., Westerweel, J.: Comparison of planar piv and tomographic piv for aeroacoustics. In: 6th Int. Symp. on Applications of Laser Techniques to Fluids Mechanics, Lisbon (2012)

  21. 21.

    Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Laizet, S., Lamballais, E., Vassilicos, J.: A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence. Comput. fluids 39(3), 471–484 (2010)

    Article  MATH  Google Scholar 

  23. 23.

    Laizet, S., Fortune, V., Lamballais, E., Vassilicos, J.: Low mach number prediction of the acoustic signature of fractal-generated turbulence. Int. J. Heat Fluid Flow (2012)

  24. 24.

    Margnat, F.: Méthode numérique hybride pour l’étude du rayonnement acoustique d’écoulements turbulents pariétaux. PhD thesis, Université de Poitiers (2005)

  25. 25.

    Margnat, F., Fortuné, V.: An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise. J. Acoust. Soc. Am. 128(4), 1656–1667 (2010)

    Article  Google Scholar 

  26. 26.

    Margnat, F., Gloerfelt, X.: On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers. J. Acoust. Soc. Am. 135(6), 3252–3263 (2014)

    Article  Google Scholar 

  27. 27.

    Martin, H.: Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Tran. 13, 1–60 (1977)

    Article  Google Scholar 

  28. 28.

    Martínez-Lera, P., Schram, C.: Correction techniques for the truncation of the source field in acoustic analogies. J. Acoust. Soc. Am. 124(6), 3421–3429 (2008)

    Article  Google Scholar 

  29. 29.

    Miller, P.: A study of wall jets resulting from single and multiple inclined jet impingement. Aeronaut. J. June/July, 201–216 (1995)

  30. 30.

    Naguib, A., Koochesfahani, M.: On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction. Phys. Fluids 16, 2613–2622 (2004)

    Article  MATH  Google Scholar 

  31. 31.

    Nishino, K., Samada, M., Kasuya, K., Torii, K.: Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. Int. J. Heat Fluid Flow 17(3), 193–201 (1996)

    Article  Google Scholar 

  32. 32.

    van Oudheusden, B.: PIV-based pressure measurement. Meas. Sci. Technol. 24(3), 032,001 (2013)

    Article  Google Scholar 

  33. 33.

    Popiel, C., Trass, O.: Visualization of a free and impinging round jet. Exp. Thermal Fluid Sci. 4, 253–264 (1991)

    Article  Google Scholar 

  34. 34.

    Rohlfs, W., Haustein, H.D., Garbrecht, O., Kneer R.: Insights into the local heat transfer of a submerged impinging jet: Influence of local flow acceleration and vortex-wall interaction. Int. J. Heat Mass Transfer (2012)

  35. 35.

    Roux, S., Fenot, M., Lalizel, G., Brizzi, L.E., Dorignac, E.: Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int. J. Heat Mass Transfer 54, 3277–3290 (2011)

    Article  Google Scholar 

  36. 36.

    Scarano, F.: Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012,001 (2013)

    Article  Google Scholar 

  37. 37.

    Vejrazka, J., Tihon, J., Marty, P., Sobolik, V.: Effect of an external excitation on the flow structure in a circular impinging jet. Phys. Fluids 17, 1–14 (2005)

    Article  MATH  Google Scholar 

  38. 38.

    Violato, D., Moore, P., Scarano, F.: Lagrangian and eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic piv. Exp. fluids 50(4), 1057–1070 (2011)

    Article  Google Scholar 

  39. 39.

    Webb, B., Ma, C.F.: Single-phase liquid jet impingement heat transfer. Adv. Heat Tran. 26, 105–217 (1995)

    Article  Google Scholar 

  40. 40.

    Westerweel, J.: Theoritical analysis of the measurement precision in particle image velocimetry. Exp. Fluids Suppl., S3–S12 (2000)

Download references

Author information



Corresponding author

Correspondence to T. Dairay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dairay, T., Roux, S., Fortuné, V. et al. On the Capability of PIV-Based Wall Pressure Estimation for an Impinging Jet Flow. Flow Turbulence Combust 96, 667–692 (2016). https://doi.org/10.1007/s10494-015-9672-7

Download citation


  • Impinging jet
  • Wall-pressure estimation
  • Particle image velocimetry
  • Direct numerical simulation