Abstract
A PIV-based pressure estimation methodology is used to compute the wall pressure from the velocity field of a turbulent impinging jet flow. A simplified formulation (2D-2C) is applied to velocity fields issued from PIV data. The ability of the method to qualitatively estimate the wall pressure signature of a 3D unsteady impinging jet flow using only two velocity components in a plane is demonstrated. Nevertheless, the 2D flow assumption used in the context of planar measurements involves an underestimation of the wall pressure values all along the radial direction. The formulation based on the full integral formalism (3D-3C), computed from DNS data without any assumption on the flow, provides a reference solution. The contributions of the surface and volume integrals to the pressure coefficient are assessed. It is shown that the most important contribution to the wall pressure comes from the volume integral. Then the underestimation observed for the simplified formulation is mostly linked with the assumptions considered for the source term computation. The effect of each assumption is quantitatively analysed with the help of the DNS data and some ways to improve the simplified methodology are finally proposed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blake, W.: Mechanics of flow-induced sound and vibration. Vol I: General concepts and elementary sources. Vol II: Complex flow-structure interactions. Applied Mathematics and Mechanics. Academic, New-York (1986)
Charonko, J., King, C.V., Smith, B.L., Vlachos, P.P.: Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol. 21(10), 105,401 (2010)
Crow, S., Champagne, F.: Orderly structure in turbulence. J. Fluid Mech. 48, 547–591 (1971)
Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.E.: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int. J. Heat Fluid Flow 50, 177–187 (2014)
Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.E.: Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362–394 (2015)
De Kat, R., Van Oudheusden, B.: Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 52(5), 1089–1106 (2012)
Didden, N., Ho, C.M.: Unsteady separation in a boudary layer produced by an impinging jet. J. Fluid Mech. 160, 235–256 (1985)
El Hassan, M., Assoum, H.H., Sobolik, V., Vétel, J., Abed-Meraim, K., Garon, A., Sakout, A.: Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 52(6), 1475–1489 (2012)
Elsinga, G.E., Scarano, F., Wieneke, B., Van Oudheusden, B.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)
Gauntner, J., Livingood, J., Hrycak, P.: Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. Tech. rep., NASA (1970)
George, W., Hussein, H.: Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)
Goldstein, R., Franchett, M.: Heat transfer from a flat surface to an oblique impinging jet. ASME J. Heat Transf. 110, 84–90 (1988)
Hadziabdic, M., Hanjalic, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221–260 (2008)
Han, B., Goldstein, R.: Jet-impingement heat transfer in gas turbine systems. Ann. N. Y. Acad. Sci. 934(1), 147–161 (2001)
Hussain, A., Zaman, K.: The ’preferred mode’ of the axisymmetric jets. J. Fluid Mech. 110, 39–71 (1981)
Jambunathan, K., Lai, R., Moss, A., Button, B.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13, 106–115 (1992)
Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000)
de Kat, R., van Oudheusden, B., Scarano, F.: Instantaneous pressure field determination in a 3d flow using time resolved thin volume tomographic-piv. In: Proceedings of the 8th international symposium on particle image velocimetryPIV09, Melbourne (2009)
Keane., R, Adrian, R.: Optimization of particle image velocimeters. part i: Double pulsed systems. Meas. Sci. Technol 1, 1202–1215 (1990)
Koschatzky, V., Overmars, E., Boersma, B., Westerweel, J.: Comparison of planar piv and tomographic piv for aeroacoustics. In: 6th Int. Symp. on Applications of Laser Techniques to Fluids Mechanics, Lisbon (2012)
Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)
Laizet, S., Lamballais, E., Vassilicos, J.: A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence. Comput. fluids 39(3), 471–484 (2010)
Laizet, S., Fortune, V., Lamballais, E., Vassilicos, J.: Low mach number prediction of the acoustic signature of fractal-generated turbulence. Int. J. Heat Fluid Flow (2012)
Margnat, F.: Méthode numérique hybride pour l’étude du rayonnement acoustique d’écoulements turbulents pariétaux. PhD thesis, Université de Poitiers (2005)
Margnat, F., Fortuné, V.: An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise. J. Acoust. Soc. Am. 128(4), 1656–1667 (2010)
Margnat, F., Gloerfelt, X.: On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers. J. Acoust. Soc. Am. 135(6), 3252–3263 (2014)
Martin, H.: Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Tran. 13, 1–60 (1977)
Martínez-Lera, P., Schram, C.: Correction techniques for the truncation of the source field in acoustic analogies. J. Acoust. Soc. Am. 124(6), 3421–3429 (2008)
Miller, P.: A study of wall jets resulting from single and multiple inclined jet impingement. Aeronaut. J. June/July, 201–216 (1995)
Naguib, A., Koochesfahani, M.: On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction. Phys. Fluids 16, 2613–2622 (2004)
Nishino, K., Samada, M., Kasuya, K., Torii, K.: Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. Int. J. Heat Fluid Flow 17(3), 193–201 (1996)
van Oudheusden, B.: PIV-based pressure measurement. Meas. Sci. Technol. 24(3), 032,001 (2013)
Popiel, C., Trass, O.: Visualization of a free and impinging round jet. Exp. Thermal Fluid Sci. 4, 253–264 (1991)
Rohlfs, W., Haustein, H.D., Garbrecht, O., Kneer R.: Insights into the local heat transfer of a submerged impinging jet: Influence of local flow acceleration and vortex-wall interaction. Int. J. Heat Mass Transfer (2012)
Roux, S., Fenot, M., Lalizel, G., Brizzi, L.E., Dorignac, E.: Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int. J. Heat Mass Transfer 54, 3277–3290 (2011)
Scarano, F.: Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012,001 (2013)
Vejrazka, J., Tihon, J., Marty, P., Sobolik, V.: Effect of an external excitation on the flow structure in a circular impinging jet. Phys. Fluids 17, 1–14 (2005)
Violato, D., Moore, P., Scarano, F.: Lagrangian and eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic piv. Exp. fluids 50(4), 1057–1070 (2011)
Webb, B., Ma, C.F.: Single-phase liquid jet impingement heat transfer. Adv. Heat Tran. 26, 105–217 (1995)
Westerweel, J.: Theoritical analysis of the measurement precision in particle image velocimetry. Exp. Fluids Suppl., S3–S12 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dairay, T., Roux, S., Fortuné, V. et al. On the Capability of PIV-Based Wall Pressure Estimation for an Impinging Jet Flow. Flow Turbulence Combust 96, 667–692 (2016). https://doi.org/10.1007/s10494-015-9672-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10494-015-9672-7