Flow, Turbulence and Combustion

, Volume 96, Issue 3, pp 667–692 | Cite as

On the Capability of PIV-Based Wall Pressure Estimation for an Impinging Jet Flow

  • T. DairayEmail author
  • S. Roux
  • V. Fortuné
  • L. E. Brizzi


A PIV-based pressure estimation methodology is used to compute the wall pressure from the velocity field of a turbulent impinging jet flow. A simplified formulation (2D-2C) is applied to velocity fields issued from PIV data. The ability of the method to qualitatively estimate the wall pressure signature of a 3D unsteady impinging jet flow using only two velocity components in a plane is demonstrated. Nevertheless, the 2D flow assumption used in the context of planar measurements involves an underestimation of the wall pressure values all along the radial direction. The formulation based on the full integral formalism (3D-3C), computed from DNS data without any assumption on the flow, provides a reference solution. The contributions of the surface and volume integrals to the pressure coefficient are assessed. It is shown that the most important contribution to the wall pressure comes from the volume integral. Then the underestimation observed for the simplified formulation is mostly linked with the assumptions considered for the source term computation. The effect of each assumption is quantitatively analysed with the help of the DNS data and some ways to improve the simplified methodology are finally proposed.


Impinging jet Wall-pressure estimation Particle image velocimetry Direct numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blake, W.: Mechanics of flow-induced sound and vibration. Vol I: General concepts and elementary sources. Vol II: Complex flow-structure interactions. Applied Mathematics and Mechanics. Academic, New-York (1986)zbMATHGoogle Scholar
  2. 2.
    Charonko, J., King, C.V., Smith, B.L., Vlachos, P.P.: Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol. 21(10), 105,401 (2010)CrossRefGoogle Scholar
  3. 3.
    Crow, S., Champagne, F.: Orderly structure in turbulence. J. Fluid Mech. 48, 547–591 (1971)CrossRefGoogle Scholar
  4. 4.
    Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.E.: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int. J. Heat Fluid Flow 50, 177–187 (2014)CrossRefGoogle Scholar
  5. 5.
    Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.E.: Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362–394 (2015)CrossRefGoogle Scholar
  6. 6.
    De Kat, R., Van Oudheusden, B.: Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 52(5), 1089–1106 (2012)CrossRefGoogle Scholar
  7. 7.
    Didden, N., Ho, C.M.: Unsteady separation in a boudary layer produced by an impinging jet. J. Fluid Mech. 160, 235–256 (1985)CrossRefGoogle Scholar
  8. 8.
    El Hassan, M., Assoum, H.H., Sobolik, V., Vétel, J., Abed-Meraim, K., Garon, A., Sakout, A.: Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 52(6), 1475–1489 (2012)CrossRefGoogle Scholar
  9. 9.
    Elsinga, G.E., Scarano, F., Wieneke, B., Van Oudheusden, B.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)CrossRefGoogle Scholar
  10. 10.
    Gauntner, J., Livingood, J., Hrycak, P.: Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. Tech. rep., NASA (1970)Google Scholar
  11. 11.
    George, W., Hussein, H.: Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Goldstein, R., Franchett, M.: Heat transfer from a flat surface to an oblique impinging jet. ASME J. Heat Transf. 110, 84–90 (1988)CrossRefGoogle Scholar
  13. 13.
    Hadziabdic, M., Hanjalic, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221–260 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Han, B., Goldstein, R.: Jet-impingement heat transfer in gas turbine systems. Ann. N. Y. Acad. Sci. 934(1), 147–161 (2001)CrossRefGoogle Scholar
  15. 15.
    Hussain, A., Zaman, K.: The ’preferred mode’ of the axisymmetric jets. J. Fluid Mech. 110, 39–71 (1981)CrossRefGoogle Scholar
  16. 16.
    Jambunathan, K., Lai, R., Moss, A., Button, B.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13, 106–115 (1992)CrossRefGoogle Scholar
  17. 17.
    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000)Google Scholar
  18. 18.
    de Kat, R., van Oudheusden, B., Scarano, F.: Instantaneous pressure field determination in a 3d flow using time resolved thin volume tomographic-piv. In: Proceedings of the 8th international symposium on particle image velocimetryPIV09, Melbourne (2009)Google Scholar
  19. 19.
    Keane., R, Adrian, R.: Optimization of particle image velocimeters. part i: Double pulsed systems. Meas. Sci. Technol 1, 1202–1215 (1990)CrossRefGoogle Scholar
  20. 20.
    Koschatzky, V., Overmars, E., Boersma, B., Westerweel, J.: Comparison of planar piv and tomographic piv for aeroacoustics. In: 6th Int. Symp. on Applications of Laser Techniques to Fluids Mechanics, Lisbon (2012)Google Scholar
  21. 21.
    Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Laizet, S., Lamballais, E., Vassilicos, J.: A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence. Comput. fluids 39(3), 471–484 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Laizet, S., Fortune, V., Lamballais, E., Vassilicos, J.: Low mach number prediction of the acoustic signature of fractal-generated turbulence. Int. J. Heat Fluid Flow (2012)Google Scholar
  24. 24.
    Margnat, F.: Méthode numérique hybride pour l’étude du rayonnement acoustique d’écoulements turbulents pariétaux. PhD thesis, Université de Poitiers (2005)Google Scholar
  25. 25.
    Margnat, F., Fortuné, V.: An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise. J. Acoust. Soc. Am. 128(4), 1656–1667 (2010)CrossRefGoogle Scholar
  26. 26.
    Margnat, F., Gloerfelt, X.: On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers. J. Acoust. Soc. Am. 135(6), 3252–3263 (2014)CrossRefGoogle Scholar
  27. 27.
    Martin, H.: Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Tran. 13, 1–60 (1977)CrossRefGoogle Scholar
  28. 28.
    Martínez-Lera, P., Schram, C.: Correction techniques for the truncation of the source field in acoustic analogies. J. Acoust. Soc. Am. 124(6), 3421–3429 (2008)CrossRefGoogle Scholar
  29. 29.
    Miller, P.: A study of wall jets resulting from single and multiple inclined jet impingement. Aeronaut. J. June/July, 201–216 (1995)Google Scholar
  30. 30.
    Naguib, A., Koochesfahani, M.: On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction. Phys. Fluids 16, 2613–2622 (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Nishino, K., Samada, M., Kasuya, K., Torii, K.: Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. Int. J. Heat Fluid Flow 17(3), 193–201 (1996)CrossRefGoogle Scholar
  32. 32.
    van Oudheusden, B.: PIV-based pressure measurement. Meas. Sci. Technol. 24(3), 032,001 (2013)CrossRefGoogle Scholar
  33. 33.
    Popiel, C., Trass, O.: Visualization of a free and impinging round jet. Exp. Thermal Fluid Sci. 4, 253–264 (1991)CrossRefGoogle Scholar
  34. 34.
    Rohlfs, W., Haustein, H.D., Garbrecht, O., Kneer R.: Insights into the local heat transfer of a submerged impinging jet: Influence of local flow acceleration and vortex-wall interaction. Int. J. Heat Mass Transfer (2012)Google Scholar
  35. 35.
    Roux, S., Fenot, M., Lalizel, G., Brizzi, L.E., Dorignac, E.: Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int. J. Heat Mass Transfer 54, 3277–3290 (2011)CrossRefGoogle Scholar
  36. 36.
    Scarano, F.: Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012,001 (2013)CrossRefGoogle Scholar
  37. 37.
    Vejrazka, J., Tihon, J., Marty, P., Sobolik, V.: Effect of an external excitation on the flow structure in a circular impinging jet. Phys. Fluids 17, 1–14 (2005)CrossRefzbMATHGoogle Scholar
  38. 38.
    Violato, D., Moore, P., Scarano, F.: Lagrangian and eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic piv. Exp. fluids 50(4), 1057–1070 (2011)CrossRefGoogle Scholar
  39. 39.
    Webb, B., Ma, C.F.: Single-phase liquid jet impingement heat transfer. Adv. Heat Tran. 26, 105–217 (1995)CrossRefGoogle Scholar
  40. 40.
    Westerweel, J.: Theoritical analysis of the measurement precision in particle image velocimetry. Exp. Fluids Suppl., S3–S12 (2000)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • T. Dairay
    • 1
    Email author
  • S. Roux
    • 2
  • V. Fortuné
    • 1
  • L. E. Brizzi
    • 1
  1. 1.Departement Fluides, Thermique, CombustionInstitut Pprime, CNRS, Universite de Poitiers, ENSMAPoitiers Cedex 9France
  2. 2.Laboratoire de Thermocinétique de Nantes (LTN) - CNRSUniversité de Nantes. Polytech’ Nantes bat. ISITEM La ChantrerieNantesFrance

Personalised recommendations