Skip to main content
Log in

The Effect of Diluent on the Sustainability of MILD Combustion in a Cyclonic Burner

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present study investigates the characteristics of MILD/flameless combustion in a cyclonic lab-scale burner. Such a configuration is effective for achieving turbulent mixing in a very short time while allowing for a reasonably long residence time for the development of combustion reactions. These two constraints are mandatory in the case of MILD combustion processes (high inlet temperatures and diluted mixtures). Such operating conditions are achieved through massive heat/mass recirculation towards the fresh incoming mixtures by recycling the exhausted gases, featuring a process where chemical kinetics times are elongated because of the dilution levels. Thus, long residence times are needed to achieve a satisfying reaction progress, and the high inlet temperatures result in fast and efficient mixing between disproportionate flows to avoid the onset of oxidation reactions before achieving diluted conditions. Under these constraints, a lab-scale facility was designed and built. The oxidation processes of C3H8/O2 mixtures highly diluted in N2 or CO2 were investigated by varying the external parameters of the system, namely, the inlet temperature (up to 1300 K) and the mixture composition (from lean to rich mixtures). Several combustion regimes were experimentally identified. When the MILD regime was established, the combustion process became homogeneous within the burner without luminous emissions. To investigate the distributed nature of the MILD combustion processes, chemical simulations were performed under the assumption of a well-stirred reactor. For both the diluents, good agreement between the experimental and numerical results was obtained for MILD combustion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavaliere, A., de Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  2. Li, P., Mi, J., Dally, B.B., Wang, F., Wang, L., Liu, Z., Chen, S., Zheng, C.: Progress and recent trend in MILD combustion. Sci. China Technol. Sci. 54(2), 255–269 (2011)

    Article  Google Scholar 

  3. Wunning, J.A., Wunning, J.G.: Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci. 23(1), 81–94 (1997)

    Article  Google Scholar 

  4. Tsuji, H., Gupta, A.K., Hasegawa, T., Katsuki, M., Kishimoto, K., Morita, M.: High Temperature Air Combustion: From Energy Conservation to Pollution Reduction. CRC Press (2002)

  5. De Joannon, M., Sorrentino, G., Cavaliere, A.: MILD combustion in diffusion-controlled regimes of hot diluted fuel. Comb. Flame 159(5), 1832–1839 (2012)

    Article  Google Scholar 

  6. Duwig, C., Li, B., Li, Z.S., Aldén, M.: High resolution imaging of flameless and distributed turbulent combustion. Comb. Flame 159(1), 306–316 (2012)

    Article  Google Scholar 

  7. Wang, F., Mi, J., Li, P.: Combustion regimes of a jet diffusion flame in hot co-flow. Energy Fuel 27(6), 3488–3498 (2013)

    Article  Google Scholar 

  8. Sabia, P, de Joannon, M., Picarelli, A., Ragucci, R.: Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure. Comb. Flame 160(1), 47–55 (2013)

    Article  Google Scholar 

  9. Dunn-Rankin, D. (ed.): Lean Combustion: Technology and Control. Academic Press (2011)

  10. Rafidi, N., Blasiak, W.: Heat transfer characteristics of HiTAC heating furnace using regenerative burners. Appl. Therm. Eng. 26, 2027–2034 (2006)

    Article  Google Scholar 

  11. Zhang, C., Ishii, T., Hino, Y., Sugiyama, S.: The numerical and experimental study of non-premixed combustion flames in regenerative furnaces. J. Heat Transfer 122, 287–293 (2000)

    Article  Google Scholar 

  12. Abtahizadeh, E., van Oijen, J., de Goey, P.: Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Comb. Flame 159(6), 2155–2165 (2012)

    Article  Google Scholar 

  13. Arrieta, C.E., Amell, A.A.: Highly flexible burner concept for research on combustion technologies with recirculation of hot combustion products. Appl. Therm. Eng. 63(2), 559–564 (2014)

    Article  Google Scholar 

  14. Khalil, A.E.E., Gupta, A.K.: Distributed swirl combustion for gas turbine application. Appl. Energy 88, 4898–4907 (2011)

    Article  Google Scholar 

  15. Sidey, J., Mastorakos, E., Gordon, R.L.: Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products. Combust. Sci. Technol. 186(4–5), 453–465 (2014)

    Article  Google Scholar 

  16. Li, P., Wang, F., Mi, J., Dally, B.B., Mei, Z.: MILD combustion under different premixing patterns and characteristics of the reaction regime. Energy Fuel 28(3), 2211–2226 (2014)

    Article  Google Scholar 

  17. Sabia, P, de Joannon, M., Lavadera, M.L., Giudicianni, P., Ragucci, R.: Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. Comb. Flame 161(2014), 3022–3030 (2014)

    Article  Google Scholar 

  18. Sabia, P, de Joannon, M., Picarelli, A., Ragucci, R.: Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure. Comb. Flame 160(1), 47–55 (2013)

    Article  Google Scholar 

  19. Sabia, P., Lavadera, M.L., Giudicianni, P., Sorrentino, G., Ragucci, R., de Joannon, M.: CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions. Comb. Flame 162(3), 533–543 (2014)

    Article  Google Scholar 

  20. Plessing, T., Peters, N., Wunning, J.G.: Laser optical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst. 27, 3197–3204 (1998)

    Article  Google Scholar 

  21. Weber, R., Orsino, S., Lallemant, N., Verlaan, A.: Combustion of natural gas with high-temperature air and large quantities of flue gas. Proc. Combust. Inst. 28, 1315–1321 (2000)

    Article  Google Scholar 

  22. Dally, B.B., Riesmeier, E., Peters, N.: Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame 137, 418–431 (2004)

    Article  Google Scholar 

  23. Mi, J., Li, P., Dally, B.B., Craig, R.A.: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace. Energy Fuel 23, 5349–5356 (2009)

    Article  Google Scholar 

  24. Veríssimo, A.S., Rocha, A.M.A., Costa, M.: Operational, combustion, and emission characteristics of a small-scale combustor. Energy Fuel 25(6), 2469–2480 (2011)

    Article  Google Scholar 

  25. Lückerath, R., Meier, W., Aigner, M.: Flox combustion at high pressure with different fuel compositions. J. Eng. Gas Turbines Power 130, 011505 (2008)

    Article  Google Scholar 

  26. Costa, M., Melo, M., Sousa, J., Levy, Y.: Experimental investigation of a novel combustor model for gas turbines. J. Propuls. Power 25, 609–617 (2009)

    Article  Google Scholar 

  27. Lammel, O., Schutz, H., Schmitz, G., Lückerath, R., Stohr, M., Noll, B., Aigner, M., Hase, M., Krebs, W.: Flox combustion at high power density and high flame temperatures. J. Eng. Gas Turbines Power 132, 121503 (2010)

    Article  Google Scholar 

  28. Coelho, P.J., Peters, N.: Numerical simulation of a mild combustion burner. Combust. Flame 124, 503–518 (2001)

    Article  Google Scholar 

  29. Christo, F.C., Dally, B.B.: Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142, 117–129 (2005)

    Article  Google Scholar 

  30. Galletti, C., Parente, A., Tognotti, L.: Numerical experimental investigation of a mild combustion burner. Comb. Flame 151(4), 649–664 (2007)

    Article  Google Scholar 

  31. Duwig, C., Stankovic, D., Fuchs, L., Li, G., Gutmark, E.: Experimental and numerical study of flameless combustion in a model gas turbine combustor. Comb. Sci. Technol. 180, 279–295 (2008). 8, 13, 127, 129

    Article  Google Scholar 

  32. Ihme, M., See, Y.C.: Les flamelet modeling of a three-stream mild combustor: Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst. 33, 1309–1317 (2012)

    Article  Google Scholar 

  33. Isaac, B.J., Parente, A., Galletti, C., Thornock, J.N., Smith, P.J., Tognotti, L.: A novel methodology for chemical time scale evaluation with detailed chemical reaction kinetics. Energy Fuel 27(4), 2255–2265 (2013)

    Article  Google Scholar 

  34. Sorrentino, G., Scarpa, D., Cavaliere, A.: Transient inception of MILD combustion in hot diluted diffusion ignition (HDDI) regime: A numerical study. Proc. Combust. Inst. 34(2), 3239–3247 (2013)

    Article  Google Scholar 

  35. Aminian, J., Galletti, C., Shahhosseini, S., Tognotti, L.: Numerical investigation of a MILD combustion burner: Analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow, Turbul. Combust. 88, 597–623 (2012)

    Article  MATH  Google Scholar 

  36. Minamoto, Y., Swaminathan, N.: Subgrid scale modelling for MILD combustion. Proc. Comb. Inst. 35(3), 3529–3536 (2015)

    Article  Google Scholar 

  37. Arghode, V.K., Gupta, A.K.: Effect of flow field for colorless distributed combustion (Cdc) for gas turbine combustion. Appl. Energy 87, 1631–1640 (2010)

    Article  Google Scholar 

  38. Rupley, F.M., Kee, R.J., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Glarborg, P., Wang, C., Adigun, O., Houf, W.G., Chou, C.P., Miller, S.F.: Reaction Design, San Diego (2003)

  39. Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., Law, C.K.: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38(4), 468–501 (2012) http://creckmodeling.chem.polimi.it/

    Article  Google Scholar 

  40. de Joannon, M., Cavaliere, A., Faravelli, T., Ranzi, E., Sabia, P., Tregrossi, A.: Analysis of process parameters for steady operations in methane mild combustion technology. Proc. Combust. Inst. 30(2), 2605–2612 (2005)

    Article  Google Scholar 

  41. de Joannon, M., Sabia, P., Tregrossi, A., Cavaliere, A.: Dynamic behavior of methane oxidation in premixed flow reactor. Comb. Sci. Tech. 176(5–6), 769–783 (2004)

    Article  Google Scholar 

  42. Sabia, P., Sorrentino, G., Chinnici, A., Cavaliere, A., Ragucci, R.: Dynamic behaviors in methane MILD and oxy-fuel combustion. Chemical effect of CO2. Energy Fuel 29(3), 1978–1986 (2005)

    Article  Google Scholar 

  43. Lamouroux, J., Ihme, M., Fiorina, B., Gicquel, O.: Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Comb. Flame 161(8), 2120–2136 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Sorrentino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorrentino, G., Sabia, P., de Joannon, M. et al. The Effect of Diluent on the Sustainability of MILD Combustion in a Cyclonic Burner. Flow Turbulence Combust 96, 449–468 (2016). https://doi.org/10.1007/s10494-015-9668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9668-3

Keywords

Navigation