Advertisement

Flow, Turbulence and Combustion

, Volume 95, Issue 4, pp 583–619 | Cite as

A One-Equation Local Correlation-Based Transition Model

  • Florian R. Menter
  • Pavel E. SmirnovEmail author
  • Tao Liu
  • Ravikanth Avancha
Article

Abstract

A model for the prediction of laminar-turbulent transition processes was formulated. It is based on the LCTM (‘Local Correlation-based Transition Modelling’) concept, where experimental correlations are being integrated into standard convection-diffusion transport equations using local variables. The starting point for the model was the γ-Re θ model already widely used in aerodynamics and turbomachinery CFD applications. Some of the deficiencies of the γ-Re θ model, like the lack of Galilean invariance were removed. Furthermore, the Re θ equation was avoided and the correlations for transition onset prediction have been significantly simplified. The model has been calibrated against a wide range of Falkner-Skan flows and has been applied to a variety of test cases.

Keywords

Laminar-turbulent transition Correlation Local variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Menter, F.R., Esch, T., Kubacki, S.: Transition Modelling Based on Local Variables. In: Proc. 5th Int. Sym. on Engineering Turbulence Modelling and Measurements, Mallorca, Spain (2002)Google Scholar
  2. 2.
    Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A Correlation based Transition Model using Local Variables Part 1 - Model Formulation (2004). ASME Paper No. GT-2004-53452Google Scholar
  3. 3.
    Menter, F.R., Langtry, R.B., Völker, S.: Transition Modelling for General Purpose CFD Codes. Journal Flow Turbulence and Combustion 77, 277–303 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Langtry, R.B., Menter, F.R.: Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J. 47(12), 2984–2906 (2009)CrossRefGoogle Scholar
  5. 5.
    Content, C., Houdeville, R.: Application of the γ-Reθ Laminar-Turbulent Transition Model in Navier-Stoles Computations AIAA Paper 2010-4445 (2010)Google Scholar
  6. 6.
    Suluksna, K., Juntasaro, V., Juntasaro, E.: Capability Assessment of Intermittency Transport Equations for Modeling Flow Transition. In: Proc. 19 Conference of Mechanical Engineering Network of Thailand, Phuket, Thailand (2005)Google Scholar
  7. 7.
    Malan, P., Suluksna, K., Juntasaro, E.: Calibrating the γ-ReΘ Transition Model for Commercial CFD. AIAA Paper 2009-1142 (2009)Google Scholar
  8. 8.
    Misaka, T., Obayashi, S.: Application of Local Correlation–Based Transition Model to Flows around Wings. AIAA Paper 2006-918 (2006)Google Scholar
  9. 9.
    Piotrowski, W., Elsner, W., Drobniak, S.: Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation. ASME J. of Turbomach 132(1) (2009)Google Scholar
  10. 10.
    Coder, J. M., Maughmer M. D.: One-Equation Transition Closure for Eddy-Viscosity Turbulence Models in CFD. AIAA Paper 2012-0672 (2012)Google Scholar
  11. 11.
    Coder, J. M., Maughmer M. D.: Computational Fluid Dynamics Compatible Transition Modelling using an Amplification Factor Transport Equation. AIAA J. (2014). doi: 10.2514/1.J052905. to be published in AIAA Journal
  12. 12.
    Seyfert, C., Krumbein, A.: Correlation-Based Transition Transport Modeling for Three-dimensional Aerodynamic Configurations. AIAA Paper 2012-0448 (2012)Google Scholar
  13. 13.
    Grabe, C., Krumbein, A.: Extension of the γ-Reθ Model for Prediction of Crossflow Transition. AIAA Paper 2014-1269 (2014)Google Scholar
  14. 14.
    Medida, S., Baeder, J.: A New Crossflow Transition Onset Criterion for RANS Turbulence Models. AIAA Paper 2013-3081 (2013)Google Scholar
  15. 15.
    ANSYS® CFX, Release 17.0, Help System, Theory Guide, ANSYS, Inc.Google Scholar
  16. 16.
    Dassler, P., Kozulovic, D., Fiala, A.: Transport Equation for Roughness Effects on Laminar-Turbulent Transition (2012)Google Scholar
  17. 17.
    Durbin, P.A.: An intermittency model for bypass transition. Int. J. Heat Fluid Flow 36, 1–6 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ge, X., Arolla, S., Durbin, P.: A Bypass Transition Model Based on the Intermittency Function. J. Flow Turbulence and Combustion (2014). doi: 10.1007/s10494-014-9533-9
  19. 19.
    Walters, D.K., Leylek, J.H.: A New Model for Boundary-Layer Transition Using a Single-Point Rans Approach. ASME J. of Turbomach. 126(1), 193–202 (2004)CrossRefGoogle Scholar
  20. 20.
    Walters, D.K., Cokljat, D.: A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows. J. of Fluids Eng. 130, 2008Google Scholar
  21. 21.
    Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, CA (1993)Google Scholar
  22. 22.
    Menter, F.R.: Influence of freestream values on k-ω turbulence model predictions. AIAA J. 30(6), 1657–1659 (1992)CrossRefGoogle Scholar
  23. 23.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 269–289 (1994)CrossRefGoogle Scholar
  24. 24.
    Abu-Ghannam, B.J., Shaw, R.: Natural Transition of Boundary Layers - The Effects of Turbulence, Pressure Gradient, and Flow History. J. of Mech. Eng. Sci. 22 (5), 213–228 (1980)CrossRefGoogle Scholar
  25. 25.
    Kato, M., Launder, B. E.: The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders. In: Proc. 9th Sym. on Turbulent Shear Flows, Kyoto, Japan (1993)Google Scholar
  26. 26.
    Mayle, R.E.: The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME J. of Turbomach. 113(4), 509–537 (1991)CrossRefGoogle Scholar
  27. 27.
    Loitsyanskii L.G.: Mechanics of Liquids and Gases. Begell House, New York (1995)Google Scholar
  28. 28.
    Savill, A.M.: Some recent progress in the turbulence modelling of by-pass transition. In: So, R.M.C., Speziale C.G., Launder, B.E. (eds.) Near-Wall Turbulent Flows, Elsevier, p. 829 (1993)Google Scholar
  29. 29.
    Schubauer, G.B., Klebanoff, P.S.: Contribution on the Mechanics of Boundary Layer Transition. NACA TN 3489 (1955)Google Scholar
  30. 30.
    Volino, R. J., Hultgren, L. S.: Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions. ASME Paper No. 2000-GT-0260 (2000)Google Scholar
  31. 31.
    Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation. ASME J. of Turbomach. 125(3), 455–464 (2003)CrossRefGoogle Scholar
  32. 32.
    Swalwell, K.E.: The effect of turbulence on stall of horizontal axis wind turbines. PhD thesis, Monash University, Australia (2005)Google Scholar
  33. 33.
    Dorney, D.J., Lake, J.P., King, P.L., Ashpis, D.E.: Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows. AIAA Paper AIAA-2000-0737 (2000)Google Scholar
  34. 34.
    Huang, J., Corke, T. C., Thomas, F. O.: Plasma Actuators for Separation Control of Low Pressure Turbine Blades. AIAA Paper AIAA-2003-1027 (2003)Google Scholar
  35. 35.
    Lake, J. P., King, P. I., Rivir, R. B.: Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves. AIAA Paper AIAA-00-0738 (2000)Google Scholar
  36. 36.
    Lake, J. P., King, P. I., Rivir, R. B.: Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number. AIAA Paper AIAA-99-0242 (1999)Google Scholar
  37. 37.
    Stieger, R., Hollis, D., Hodson, H.: Unsteady Surface Pressures due to Wake Induced Transition in a Laminar Separation Bubble on a LP Turbine Cascade. ASME Paper GT-2003-38303 (2003)Google Scholar
  38. 38.
    Wu, X., Durbin P.A.: Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage, vol. 446, pp 199–228 (2001)Google Scholar
  39. 39.
    Zaki, T.A., Wissink, J.G., Rodi, W., Durbin, P.A.: Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence, vol. 665, pp 57–98 (2010)Google Scholar
  40. 40.
    Fischer, A., Riess, W., Seume, J. R.: Performance of strongly bowed stators in a 4-stage high speed compressor. ASME Paper No. GT2003-38392 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Florian R. Menter
    • 1
  • Pavel E. Smirnov
    • 1
    Email author
  • Tao Liu
    • 2
  • Ravikanth Avancha
    • 3
  1. 1.ANSYS Germany GmbHOtterfingGermany
  2. 2.General Electric Company, Global Research Center, One Research CircleNiskayunaUSA
  3. 3.GE Aviation, GE India Technology CentreBangaloreIndia

Personalised recommendations