Flow, Turbulence and Combustion

, Volume 95, Issue 4, pp 583–619 | Cite as

A One-Equation Local Correlation-Based Transition Model

  • Florian R. Menter
  • Pavel E. Smirnov
  • Tao Liu
  • Ravikanth Avancha


A model for the prediction of laminar-turbulent transition processes was formulated. It is based on the LCTM (‘Local Correlation-based Transition Modelling’) concept, where experimental correlations are being integrated into standard convection-diffusion transport equations using local variables. The starting point for the model was the γ-Reθ model already widely used in aerodynamics and turbomachinery CFD applications. Some of the deficiencies of the γ-Reθ model, like the lack of Galilean invariance were removed. Furthermore, the Reθ equation was avoided and the correlations for transition onset prediction have been significantly simplified. The model has been calibrated against a wide range of Falkner-Skan flows and has been applied to a variety of test cases.


Laminar-turbulent transition Correlation Local variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menter, F.R., Esch, T., Kubacki, S.: Transition Modelling Based on Local Variables. In: Proc. 5th Int. Sym. on Engineering Turbulence Modelling and Measurements, Mallorca, Spain (2002)Google Scholar
  2. 2.
    Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A Correlation based Transition Model using Local Variables Part 1 - Model Formulation (2004). ASME Paper No. GT-2004-53452Google Scholar
  3. 3.
    Menter, F.R., Langtry, R.B., Völker, S.: Transition Modelling for General Purpose CFD Codes. Journal Flow Turbulence and Combustion 77, 277–303 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Langtry, R.B., Menter, F.R.: Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J. 47(12), 2984–2906 (2009)CrossRefGoogle Scholar
  5. 5.
    Content, C., Houdeville, R.: Application of the γ-Reθ Laminar-Turbulent Transition Model in Navier-Stoles Computations AIAA Paper 2010-4445 (2010)Google Scholar
  6. 6.
    Suluksna, K., Juntasaro, V., Juntasaro, E.: Capability Assessment of Intermittency Transport Equations for Modeling Flow Transition. In: Proc. 19 Conference of Mechanical Engineering Network of Thailand, Phuket, Thailand (2005)Google Scholar
  7. 7.
    Malan, P., Suluksna, K., Juntasaro, E.: Calibrating the γ-ReΘ Transition Model for Commercial CFD. AIAA Paper 2009-1142 (2009)Google Scholar
  8. 8.
    Misaka, T., Obayashi, S.: Application of Local Correlation–Based Transition Model to Flows around Wings. AIAA Paper 2006-918 (2006)Google Scholar
  9. 9.
    Piotrowski, W., Elsner, W., Drobniak, S.: Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation. ASME J. of Turbomach 132(1) (2009)Google Scholar
  10. 10.
    Coder, J. M., Maughmer M. D.: One-Equation Transition Closure for Eddy-Viscosity Turbulence Models in CFD. AIAA Paper 2012-0672 (2012)Google Scholar
  11. 11.
    Coder, J. M., Maughmer M. D.: Computational Fluid Dynamics Compatible Transition Modelling using an Amplification Factor Transport Equation. AIAA J. (2014). doi:10.2514/1.J052905. to be published in AIAA Journal
  12. 12.
    Seyfert, C., Krumbein, A.: Correlation-Based Transition Transport Modeling for Three-dimensional Aerodynamic Configurations. AIAA Paper 2012-0448 (2012)Google Scholar
  13. 13.
    Grabe, C., Krumbein, A.: Extension of the γ-Reθ Model for Prediction of Crossflow Transition. AIAA Paper 2014-1269 (2014)Google Scholar
  14. 14.
    Medida, S., Baeder, J.: A New Crossflow Transition Onset Criterion for RANS Turbulence Models. AIAA Paper 2013-3081 (2013)Google Scholar
  15. 15.
    ANSYS® CFX, Release 17.0, Help System, Theory Guide, ANSYS, Inc.Google Scholar
  16. 16.
    Dassler, P., Kozulovic, D., Fiala, A.: Transport Equation for Roughness Effects on Laminar-Turbulent Transition (2012)Google Scholar
  17. 17.
    Durbin, P.A.: An intermittency model for bypass transition. Int. J. Heat Fluid Flow 36, 1–6 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ge, X., Arolla, S., Durbin, P.: A Bypass Transition Model Based on the Intermittency Function. J. Flow Turbulence and Combustion (2014). doi:10.1007/s10494-014-9533-9
  19. 19.
    Walters, D.K., Leylek, J.H.: A New Model for Boundary-Layer Transition Using a Single-Point Rans Approach. ASME J. of Turbomach. 126(1), 193–202 (2004)CrossRefGoogle Scholar
  20. 20.
    Walters, D.K., Cokljat, D.: A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows. J. of Fluids Eng. 130, 2008Google Scholar
  21. 21.
    Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, CA (1993)Google Scholar
  22. 22.
    Menter, F.R.: Influence of freestream values on k-ω turbulence model predictions. AIAA J. 30(6), 1657–1659 (1992)CrossRefGoogle Scholar
  23. 23.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 269–289 (1994)CrossRefGoogle Scholar
  24. 24.
    Abu-Ghannam, B.J., Shaw, R.: Natural Transition of Boundary Layers - The Effects of Turbulence, Pressure Gradient, and Flow History. J. of Mech. Eng. Sci. 22 (5), 213–228 (1980)CrossRefGoogle Scholar
  25. 25.
    Kato, M., Launder, B. E.: The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders. In: Proc. 9th Sym. on Turbulent Shear Flows, Kyoto, Japan (1993)Google Scholar
  26. 26.
    Mayle, R.E.: The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME J. of Turbomach. 113(4), 509–537 (1991)CrossRefGoogle Scholar
  27. 27.
    Loitsyanskii L.G.: Mechanics of Liquids and Gases. Begell House, New York (1995)Google Scholar
  28. 28.
    Savill, A.M.: Some recent progress in the turbulence modelling of by-pass transition. In: So, R.M.C., Speziale C.G., Launder, B.E. (eds.) Near-Wall Turbulent Flows, Elsevier, p. 829 (1993)Google Scholar
  29. 29.
    Schubauer, G.B., Klebanoff, P.S.: Contribution on the Mechanics of Boundary Layer Transition. NACA TN 3489 (1955)Google Scholar
  30. 30.
    Volino, R. J., Hultgren, L. S.: Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions. ASME Paper No. 2000-GT-0260 (2000)Google Scholar
  31. 31.
    Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation. ASME J. of Turbomach. 125(3), 455–464 (2003)CrossRefGoogle Scholar
  32. 32.
    Swalwell, K.E.: The effect of turbulence on stall of horizontal axis wind turbines. PhD thesis, Monash University, Australia (2005)Google Scholar
  33. 33.
    Dorney, D.J., Lake, J.P., King, P.L., Ashpis, D.E.: Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows. AIAA Paper AIAA-2000-0737 (2000)Google Scholar
  34. 34.
    Huang, J., Corke, T. C., Thomas, F. O.: Plasma Actuators for Separation Control of Low Pressure Turbine Blades. AIAA Paper AIAA-2003-1027 (2003)Google Scholar
  35. 35.
    Lake, J. P., King, P. I., Rivir, R. B.: Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves. AIAA Paper AIAA-00-0738 (2000)Google Scholar
  36. 36.
    Lake, J. P., King, P. I., Rivir, R. B.: Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number. AIAA Paper AIAA-99-0242 (1999)Google Scholar
  37. 37.
    Stieger, R., Hollis, D., Hodson, H.: Unsteady Surface Pressures due to Wake Induced Transition in a Laminar Separation Bubble on a LP Turbine Cascade. ASME Paper GT-2003-38303 (2003)Google Scholar
  38. 38.
    Wu, X., Durbin P.A.: Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage, vol. 446, pp 199–228 (2001)Google Scholar
  39. 39.
    Zaki, T.A., Wissink, J.G., Rodi, W., Durbin, P.A.: Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence, vol. 665, pp 57–98 (2010)Google Scholar
  40. 40.
    Fischer, A., Riess, W., Seume, J. R.: Performance of strongly bowed stators in a 4-stage high speed compressor. ASME Paper No. GT2003-38392 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Florian R. Menter
    • 1
  • Pavel E. Smirnov
    • 1
  • Tao Liu
    • 2
  • Ravikanth Avancha
    • 3
  1. 1.ANSYS Germany GmbHOtterfingGermany
  2. 2.General Electric Company, Global Research Center, One Research CircleNiskayunaUSA
  3. 3.GE Aviation, GE India Technology CentreBangaloreIndia

Personalised recommendations