Skip to main content
Log in

Effects of Flow Ratio of Transverse Jet on Flow and Heat Transfer : A LBE Study

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A Lattice Boltzmann Equation (LBE) method is utilized to simulate a transverse jet in cross flow (TJiCF) to investigate the interaction between the transverse jet and the main flow by using the TD2G9 model. Seven cases of different flow ratios (Jr = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.0) are simulated. The influences of flow ratio (Jr) of the transverse jet to the main flow on vortex streets and temperature fields are studied. The characteristics of fluid vortex, mean axial velocity, mean temperature, fluctuating velocity, etc., are studied in details to show the effects of Jr. Significant changes of velocity and temperature fields are found in TJiCFs for Jr > 1, i.e. the turbulence is augmented significantly and the convective and conductive heat transfer are enhanced greatly too. The turbulence augmentation is especially evident in the recirculation zone after the transverse jet. The conductive heat transfer is enhanced by thinning the thermal boundary layer near the wall, and the convective heat transfer is enhanced by intensive fluid mixing between the transverse jet and main flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, C.G., Uddin, M., Pollard, A.: Mean flow structures inside the human upper airway. Flow Turbulence Combust. 81, 155–188 (2008)

    Article  MATH  Google Scholar 

  2. Boffetta, G.: Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech. 589, 253–260 (2007)

    Article  MATH  Google Scholar 

  3. Boffetta, G., Ecke, R.E.: Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–451 (2012)

    Article  MathSciNet  Google Scholar 

  4. Brinkerhoff, J.R., Yaras, M.I.: Direct Numerical Simulation of a Square Jet Ejected Transversely into an Accelerating, Laminar Main Flow. Flow Turbulence Combust. 89, 519–546 (2012)

    Article  Google Scholar 

  5. Dogruoz, M.B.: Experimental and numerical investigation of turbulent heat transfer due to rectangular impinging jets. The University of Arizona (2005). Ph.D. Thesis

  6. Ditlevsen, P.D.: A stochastic model of cascades in two-dimensional turbulence. Phys. Fluids 24, 105109 (2012)

    Article  Google Scholar 

  7. Dritschel, D.G., Tran, C.V., Scott, R.K.: Revisiting Batchelor’s theory of two-dimensional turbulence. J. Fluid Mech. 591, 379–391 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan, J. Y., Xu, S. L., Wang, D. Z.: PDA measurements of two-phase flow structure and particle dispersion for a particle-laden jet in crossflow. J. Hydrodyn. 22, 9–18 (2010)

    Article  Google Scholar 

  9. Fay, J.A.: Introduction to Fluid Mechanics. MIT Press (1998)

  10. Gui, N., Xu, W.K., Ge, L., Yan, J.: LBE-DEM coupled simulation of gas-solid two-phase cross jets. Sci. China Technol. Sci. 56, 1377–1386 (2013a)

    Article  Google Scholar 

  11. Gui, N., Yan, J., Fan, J.R., Cen, K.F.: A DNS study of the effect of particle feedback in a gas–solid three dimensional plane jet. Fuel 106, 51–60 (2013b)

    Article  Google Scholar 

  12. Guo, Z.L., Shi, B.C., Wang, N.C.: Lattice BGK model for incompressible Navier-Stokes equation. J. Comput. Phys. 165, 288–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo, Z.L., Shi, B.C., Zheng, C.G.: A coupled lattice BGK model for the boussinesq equations. Int. J. Numer. Methods Fluids 39, 325–342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kourta, A., Michel, B., Boisson, H.C., Gajan, P., Strzelecki, A.: Improved unsteady RANS models applied to jet transverse to a pipe flow. Flow Turbulence Combust. 91, 157–175 (2013)

    Article  Google Scholar 

  15. Lai, C.C.K., Lee, J.H.W.: Initial mixing of inclined dense jet in perpendicular crossflow. Environ. Fluid Mech. 14, 25–49 (2014)

    Article  Google Scholar 

  16. Muldoon, F., Acharya, S.: Direct numerical simulation of pulsed jets-in-crossflow. Comput. Fluids 39, 1745–1773 (2010)

    Article  MATH  Google Scholar 

  17. Or, C.M., Lam, K.M., Liu, P.: Potential core lengths of round jets in stagnant and moving environments. J. Hydro Environ. Res. 5, 81–91 (2011)

    Article  Google Scholar 

  18. Pathak, M., Dewan, A., Dass, A.K.: Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. Int. J. Heat Mass Transfer 49, 3914–3928 (2006)

    Article  MATH  Google Scholar 

  19. Pathak, M., Dass, A.K., Dewan, A.: An investigation of turbulent rectangular jet discharged into a narrow channel weak crossflow. J. Hydrodyn. 20, 154–163 (2008)

    Article  Google Scholar 

  20. Roger, F., Gourara, A., Most, J.M., Wang, H.Y.: Numerical investigation on the reactive gas mixing through interaction between twin square jets side-by-side and a crossflow. Chem. Eng. J. 238, 45–55 (2014)

    Article  Google Scholar 

  21. Sakai, E., Takahashi, T., Watanabe, H.: Large-eddy simulation of an inclined round jet issuing into a crossflow. Int. J. Heat Mass Transfer 69, 300–311 (2014)

    Article  Google Scholar 

  22. Tabeling, P.: Two-dimensional turbulence: a physicist approach. Phys. Rep. 362, 1–62 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tian, Z.F., Witt, P.J., Yang, W., Schwarz, M.P.: Numerical simulation and validation of gas-particle rectangular jets in crossflow. Comput. Chem. Eng. 35, 595–605 (2011)

    Article  Google Scholar 

  24. Valiño, L., Martín, J., Házi, G.: Dynamics of isotropic homogeneous turbulence with linear forcing using a lattice boltzmann method. Flow Turbulence Combust. 84, 219–237 (2010)

    Article  MATH  Google Scholar 

  25. Xu, Y., Subramaniam, S.: Effect of Particle Clusters on Carrier Flow Turbulence: A Direct Numerical Simulation Study. Flow Turbulence Combust. 85, 735–761 (2010)

    Article  MATH  Google Scholar 

  26. Yasaswy, N.S., Saroj, S., Hindasageri, V., Prabhu, S.V.: Local heat transfer distribution of an impinging air jet through a crossflow. Int. J. Therm. Sci. 79, 250–259 (2014)

    Article  Google Scholar 

  27. Yi, J., Plesniak, M.W.: Dispersion of a particle-laden air jet in a confined rectangular crossflow. Powder Technol. 125, 168–178 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Gui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, N., Xu, W., Ge, L. et al. Effects of Flow Ratio of Transverse Jet on Flow and Heat Transfer : A LBE Study. Flow Turbulence Combust 95, 61–77 (2015). https://doi.org/10.1007/s10494-015-9606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9606-4

Keywords

Navigation