Skip to main content

Curvature Effects in Turbulent Premixed Flames of H2/Air: a DNS Study with Reduced Chemistry


Data from a three-dimensional Direct Numerical Simulation of a turbulent premixed Bunsen flame at a low global Lewis number are analyzed to address the effects of the curvature on the local flame front. For this purpose, the chemical kinetics is modeled according to a reduced scheme, involving 5 reactions and 7 species, to mimic a H2/Air flame at equivalence ratio ϕ=0.5. An increase of the local temperature and reaction rate is found for fronts elongated into the fresh gases (concave), while local quenching is observed for fronts elongated in the opposite direction (convex), i.e. towards the burnt mixture. Data show that the occurrence in the reaction region of these super-reactive (concave fronts) and quenched zones (convex fronts) is predominant compared to a behavior compatible with the corresponding unstretched laminar flame. In particular, well inside the reaction region, the probability density function of the OH radical concentration shows a bi-modal shape with peaks corresponding to negative (concave) and positive (convex) curvatures, while a locally flat front is less frequently detected. The two states are associated with a higher and lower chemical activity with respect the laminar case. Additional statistics conditioned to the local hydrogen concentration provide further information on this dual-state dynamics and on the differences with respect to the corresponding laminar unstretched flame when moving from the fresh to the burnt gas regions. Finally we discuss the effects of the turbulence on the thermo-diffusive instability showing that the turbulent fluctuations, increasing the flame front corrugations, are essentially responsible of the local flame quenching.

This is a preview of subscription content, access via your institution.


  1. 1.

    Chaos, M., Dryer, F.: Combust. Sci. Technol. 180(6), 1053 (2008)

    Article  Google Scholar 

  2. 2.

    Aspden, A., Day, M., Bell, J.: J. Fluid Mech. 680, 287 (2011)

    Article  MATH  Google Scholar 

  3. 3.

    Chakraborty, N., Cant, R.: Physics of Fluids 21, 035110 (2009)

    Article  Google Scholar 

  4. 4.

    Gicque, O., Thévenin, D., Darabiha, N.: Flow, Turbulence and Combustion 73(3-4), 307 (2005)

    Article  Google Scholar 

  5. 5.

    Vreman, A., Van Oijen, J., De Goey, L., Bastiaans, R.: Int. J. Hydrog. Energy 34(6), 2778 (2009)

    Article  Google Scholar 

  6. 6.

    Wang, H., Luo, K., Fan, J.: Energy Fuels 27(1), 549 (2012)

    Article  Google Scholar 

  7. 7.

    Wang, H., Luo, K., Qiu, K., Lu, S., Fan, J.: Int. J. Hydrogen Energy 37(6), 5246 (2012)

    Article  Google Scholar 

  8. 8.

    Chung, S., Law, C.: Combust. Flame 52, 59 (1983)

    Article  Google Scholar 

  9. 9.

    Law, C., Chung, S.: Combust. Sci. Technol. 29(3–6), 129 (1982)

    Article  Google Scholar 

  10. 10.

    Lipatnikov, A., Chomiak, J.: Combust. Sci. Technol. 137(1–6), 277 (1998)

    Article  Google Scholar 

  11. 11.

    Lipatnikov, A., Chomiak, J.: Prog. Energy Combust. Sci. 31(1), 1 (2005)

    Article  Google Scholar 

  12. 12.

    Yuan, J., Ju, Y., Law, C.: Phys. Fluids 17, 074106 (2005)

    Article  Google Scholar 

  13. 13.

    Poinsot, T., Veynante, D.: Theoretical and numerical combustion. RT Edwards Inc. (2005)

  14. 14.

    Law, C: Combustion physics . Cambridge University Press (2006)

  15. 15.

    Chakraborty, N., Hawkes, E., Chen, J., Cant, R.: Combust. Flame 154(1), 259 (2008)

    Article  Google Scholar 

  16. 16.

    Mantel, T., Borghi, R.: Combust. Flame 96(4), 443 (1994)

    Article  Google Scholar 

  17. 17.

    Shim, Y., Tanaka, S., Tanahashi, M., Miyauchi, T.: Proc. Combust. Inst. 33(1), 1455 (2011)

    Article  Google Scholar 

  18. 18.

    Im, H.G., Chen, J.H.: Combust. Flame 131(3), 246 (2002)

    Article  Google Scholar 

  19. 19.

    Bastiaans, R., Vreman, A.: Int. J. Numer. Methods for Heat & Fluid Flow 22(1), 112 (2012)

    Article  Google Scholar 

  20. 20.

    Day, M., Bell, J., Bremer, P.T., Pascucci, V., Beckner, V., Lijewski, M.: Combust. Flame 156(5), 1035 (2009)

    Article  Google Scholar 

  21. 21.

    Majda, A., Sethian, J.: Combust. Sci. Technol. 42(3–4), 185 (1985)

    Article  Google Scholar 

  22. 22.

    Battista, F., Picano, F., Casciola, C.M.: Phys. Fluids 26(5), 055101 (2014)

    Article  Google Scholar 

  23. 23.

    Waterson, N., Deconinck, H.: J. Comput. Phys. 224(1), 182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Orlanski, I.: J. Comput. Phys. 21(3), 251 (1976)

    Article  MATH  Google Scholar 

  25. 25.

    Picano, F., Casciola, C.: Phys. Fluids 19(11), 118106 (2007)

    Article  Google Scholar 

  26. 26.

    Boersma, B., Brethouwer, G., Nieuwstadt, F.: Phys. Fluids 10, 899 (1998)

    Article  Google Scholar 

  27. 27.

    Li, X., Demmel, J., Gilbert, J., Grigori, iL., Shao, M., Yamazaki, I.: SuperLU Users’ Guide. Tech. Rep. LBNL-44289. Lawrence Berkeley National Laboratory (1999). Last update: August 2011.

  28. 28.

    Picano, F., Hanjalić, K.: Flow, Turbulence and Combustion 89(4), 627 (2012)

    Article  Google Scholar 

  29. 29.

    Picano, F., Sardina, G., Gualtieri, P., Casciola, C.: Phys. Fluids 22, 051705 (2010)

    Article  Google Scholar 

  30. 30.

    Battista, F., Picano, F., Troiani, G., Casciola, C.: Phys. Fluids 23(12), 123304 (2011)

    Article  Google Scholar 

  31. 31.

    Picano, F., Battista, F., Troiani, G., Casciola, C.: Exp. Fluids 50(1), 75 (2011)

    Article  Google Scholar 

  32. 32.

    Bowman, C., Hanson, R.K., Davidson, D.F., Gardiner W. Jr., Lissianski, V., Smith, G.P., Golden, D., Frenklach, M., Goldenberg, M.: Gri-mech home page (1999).

  33. 33.

    Chen, J., Chang, W., Koszykowski, M.: Combust. Sci. Technol. 110(1), 505 (1995)

    Article  Google Scholar 

  34. 34.

    Hirschfelder, J., Curtiss, C., Bird, R.: Molecular Theory of Gases and Liquids. John Wiley and Sons, Inc., New York (1964)

    Google Scholar 

  35. 35.

    Chen, Y.C., Bilger, R.W.: Combust. Flame 131(4), 400 (2002)

    Article  Google Scholar 

  36. 36.

    Chen, Y.C., Bilger, R.W.: Combust. Flame 138(1), 155 (2004)

    Article  Google Scholar 

  37. 37.

    Frank, J.H., Kalt, P.A., Bilger, R.W.: Combust. Flame 116(1), 220 (1999)

    Article  Google Scholar 

  38. 38.

    S. Stårner, Bilger, R., Lyons, K., Frank, J., Long, M.: Combust. Flame 99(2), 347 (1994)

    Article  Google Scholar 

  39. 39.

    Chakraborty, N., Klein, M., Swaminathan, N.: Proc. Combust. Inst. 32(1), 1409 (2009)

    Article  Google Scholar 

  40. 40.

    Altantzis, C., Frouzakis, C., Tomboulides, A., Kerkemeier, S., Boulouchos, K.: Proc. Combust. Inst. 33(1), 1261 (2011)

    Article  Google Scholar 

  41. 41.

    Kadowaki, S., Hasegawa, T.: Prog. Energy Combust. Sci. 31(3), 193 (2005)

    Article  Google Scholar 

  42. 42.

    Barenblatt, G., Zeldovich, Y.B., Istratov, A.G.: Zh. Prikl. Mekh. Tekh. Fiz. 4, 21 (1962)

    Google Scholar 

  43. 43.

    Bell, J.B., Cheng, R.K., Day, M.S., Shepherd, I.G.: Proc. Combust. Inst. 31(1), 1309 (2007)

    Article  Google Scholar 

  44. 44.

    Robinson, S.K.: Ann. Rev. Fluid Mech. 23(1), 601 (1991)

    Article  Google Scholar 

  45. 45.

    Brandt, L.: European Journal of Mechanics-B/Fluids (2014)

Download references

Author information



Corresponding author

Correspondence to F. Picano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rocco, G., Battista, F., Picano, F. et al. Curvature Effects in Turbulent Premixed Flames of H2/Air: a DNS Study with Reduced Chemistry. Flow Turbulence Combust 94, 359–379 (2015).

Download citation


  • DNS
  • Turbulent premixed flames
  • Hydrogen
  • Flame instability