Skip to main content

Study of the Discrete Spectrum in a Mach 4.5 Görtler Flow

Abstract

Evolution of the discrete spectrum in the M a = 4.5 boundary layer is studied with LST and PSE approaches. Both two-dimensional (2-D) and three-dimensional (3-D) disturbances are considered with streamwise curvature effects. The concave curvature shows a destabilizing effect on the 2-D second/third mode when the fast mode (mode F(1), mode F(2)...) synchronizes with the slow mode (mode S). The spectrum branching in the synchronization between the mode F(2) and mode S is also observed. The increase in the spanwise wavenumber(3-D disturbances), on the other hand, suppresses the synchronization between mode F and mode S and reduces the growth rate of the unstable mode. With regard to the 3-D disturbances subjecting to the concave curvature, the mode S originating from the slow acoustic wave amounts to the unsteady Görtler mode while the quasi-steady Görtler mode emanates from the continuous spectrum of the vorticity/entropy wave.

This is a preview of subscription content, access via your institution.

References

  1. Mack, L.M.: Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13(3), 278–289 (1975)

    Article  Google Scholar 

  2. Mack, L.M.: Boundary-layer linear stability theory. AGARD Report 709, 1984. Special Course on Stability and Transition of Laminar Flows

  3. Federov, A., Tumin, A.: High-speed boundary-layer instability: Old terminology and a new framework. AIAA J. 49(8), 1647–1657 (2011)

    Article  Google Scholar 

  4. Wang, X., Zhong, X.: The stabilization of a hypersonic boundary layer using local sections of porous coating. Phys. Fluids 24(3) (2012)

  5. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerospace Sci. 39(4), 249–315 (2003)

    Article  Google Scholar 

  6. Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MathSciNet  Google Scholar 

  7. Reed, H.L., Saric, W.S., Arnal, D.: Linear stability theory applied to boundary layers. Ann. Rev. Fluid Mech. 28, 389–428 (1996)

    Article  MathSciNet  Google Scholar 

  8. Wang, L., Fu, S.: Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition. Flow, Turbulence Combustion 87(1), 165–187 (2011)

    Article  MATH  Google Scholar 

  9. Wang, L., Fu, S., Carnarius, A., Mockett, C., Thiele, F.: A modular rans approach for modelling laminar-turbulent transition in turbomachinery flows. Int. J. Heat Fluid Flow 34, 62–69 (2012)

    Article  Google Scholar 

  10. Fu, S., Wang, L.: Rans modeling of high-speed aerodynamic flow transition with consideration of stability theory. Prog. Aerospace Sci. 58, 36–59 (2013)

    Article  Google Scholar 

  11. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. part 2. receptivity to free-stream sound. J. Fluid Mech. 488(7), 79–121 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. part 3. effects of different types of free-stream disturbances. J. Fluid Mech. 532 (6), 63–109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fedorov, A.V.: Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491(9), 101–129 (2003)

    Article  MATH  Google Scholar 

  14. Fedorov, A.V., Ryzhov, A.A., Soudakov, V.G., Utyuzhnikov, S.V.: Receptivity of a high-speed boundary layer to temperature spottiness. J. Fluid Mech. 722, 533–553 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tempelmann, D., Schrader, L.-U., Hanifi, A., Brandt, L., Henningson, D.S.: Swept wing boundary-layer receptivity to localized surface roughness. J. Fluid Mech. 711, 516–544 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fedorov, A.V.: Receptivity of a supersonic boundary layer to solid particulates. J. Fluid Mech. 737, 105–131 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruban, A.I., Bernots, T., Pryce, D.: Receptivity of the boundary layer to vibrations of the wing surface. J. Fluid Mech. 723, 480–528 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fedorov, A.V.: Transition and stability of high-speed boundary layers. Ann. Rev. Fluid Mech. 43, 79–95 (2011)

    Article  Google Scholar 

  19. Zhong, X., Wang, X.: Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annual Rev. Fluid Mech. 44, 527–561 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kovasznay, L.S.G.: Turbulence in supersonic flow. J. Aeronautical Sci. 20(10), 657–674 (1953)

  21. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. part 1. wave structures and interactions. J. Fluid Mech. 488(7), 31–78 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fedorov, A.V., Khokhlov, A.P.: Prehistory of instability in a hypersonic boundary layer. Theor. Comput. Fluid Dyn. 14(6), 359–375 (2001)

    Article  MATH  Google Scholar 

  23. Federov, A., Tumin, A.: Initial-value problem for hypersonic boundary-layer flows. AIAA J. 41(3), 379–389 (2003)

    Article  Google Scholar 

  24. Gushchin, V.R., Fedorov, A.V.: Excitation and development of unstable disturbances in a supersonic boundary layer. Fluid Dyn. 25(3), 344–352 (1990)

    Article  MathSciNet  Google Scholar 

  25. Lifshitz, Y., Degani, D., Tumin, A.: Study of discrete modes branching in high-speed boundary layers. AIAA J. 50(10), 2202–2210 (2012)

    Article  Google Scholar 

  26. Hall, P.: The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130, 41–58 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Day, H.P., Herbert, T., Saric, W.S.: Comparing local and marching analysis of Görtler instability. AIAA J. 28(6), 1010–1015 (1990)

    Article  Google Scholar 

  28. Bottaro, A., Luchini, P.: Görtler vortices: Are they amenable to local eigenvalue analysis. Eur. J. Mech. - B/Fluids 18(1), 47–65 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wu, X., Zhao, D., Luo, J.: Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66–100 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schrader, L.-U., Brandt, L., Zaki, T.A.: Receptivity, instability and breakdown of Görtler flow. J. Fluid Mech. 682(9), 362–396 (2011)

    Article  MATH  Google Scholar 

  31. Ivanov, A.V., Kachanov, Y.S., Mischenko, D.A.: On excitation of Görtler vortices due to scattering of free-stream vortices on surface non-uniformities. J. Phys. Conf. Ser. 318(3), 032029 (2011)

    Article  Google Scholar 

  32. Ivanov, A.V., Kachanov, Y.S., Mischenko, D.A.: Boundary-layer receptivity to surface non-uniformities leading to generation of Görtler vortices. J. Phys.: Conf. Ser. 318(3), 032031 (2011)

    Google Scholar 

  33. Dando, A.H., Seddougui, S.O.: The compressible Görtler problem in two-dimensional boundary layers. IMA J. Appl. Math. 51(1), 27–67 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ren, J., Fu. S.: Nonlinear development of the multiple Görtler modes in hypersonic boundary layer flows. 43rd AIAA Fluid Dynamics Conference and Exhibit, AIAA-2013-2467 (2013)

  35. Ren, J., Fu, S.: Competition of the multiple Görtler modes in hypersonic boundary layer flows. Sci. China Phys. Mech & Astronomy 57(6), 1178–1193 (2014)

    Article  Google Scholar 

  36. Volino, R.J., Simon, T.W.: Spectral measurements in transitional boundary layers on a concave wall under high and low free-stream turbulence conditions. J. Turbomachinery 122, 450–457 (2000)

    Article  Google Scholar 

  37. Boiko, A.V., Ivanov, A.V., Kachanov, Y.S., Mischenko, D.A.: Quasi-steady and unsteady goertler vortices on concave wall: experiment and theory. In: J.M.L.M. Palma, A. Silva Lopes (eds.) Advances in Turbulence XI, volume 117 of Springer Proceedings Physics, pp 173–175. Springer Berlin, Heidelberg (2007)

  38. Boiko, A.V., Ivanov, A.V., Kachanov, Y.S., Mischenko, D.A.: Steady and unsteady Görtler boundary-layer instability on concave wall. Eur. J. Mech. - B/Fluids 29(2), 61–83 (2010)

    Article  MATH  Google Scholar 

  39. Wang, X., Zhong, X.: Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness. J. Spacecraft rockets 45(6), 1165–1175 (2008)

    Article  Google Scholar 

  40. Whang, C., Zhong, X.: Receptivity of Görtler vortices in hypersonic boundary layers. 40th Aerospace Sciences Meeting & Exhibit, AIAA-2002-0151. (2002)

  41. Whang, C., Zhong, X.: Leading edge receptivity of Görtler vortices in a mach 15 flow over a blunt wedge. 41st Aerospace Sciences Meeting & Exhibit, AIAA-2002-0151 (2002)

  42. Chang, C.-L., Malik, M.R.: Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323–360 (1994)

    Article  MATH  Google Scholar 

  43. Floryan, J.M., Saric, W.S.: Stability of Görtler vortices in boundary layers. AIAA J. 20(3), 316–324 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  44. Floryan, J.M., Saric, W.S.: Wavelength selection and growth of Görtler vortices. AIAA J. 22(11), 1529–1538 (1984)

    Article  MATH  Google Scholar 

  45. Bertolotti, F.P., Herbert, Th., Spalart, P.R.: Linear and nonlinear stability of the blasius boundary layer. J. Fluid Mech. 9, 441–474 (1992)

    Article  MathSciNet  Google Scholar 

  46. Herbert, T.: Parabolized stability equations. Ann. Rev. Fluid Mech. 29, 245–283 (1997)

    Article  MathSciNet  Google Scholar 

  47. Chang, C.-L., Malik, M., Erlebacher, G., Hussaini, M.: Compressible stability of growing boundary layers using parabolized stability equations. 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, AIAA-1991-1636 (1991)

  48. Li, F., Malik, M.R.: On the nature of pse approximation. Theor. Comput. Fluid Dyn. 8(4), 253–273 (1996)

    Article  MATH  Google Scholar 

  49. Andersson, P., Henningson, D.S., Hanifi, A.: On a stabilization procedure for the parabolic stability equations. J. Eng. Math. 33(3), 311–332 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  50. Saric, W.S.: Görtler vortices.Ann. Rev. Fluid Mech. 26, 379–409 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Fu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Fu, S. Study of the Discrete Spectrum in a Mach 4.5 Görtler Flow. Flow Turbulence Combust 94, 339–357 (2015). https://doi.org/10.1007/s10494-014-9575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9575-z

Keywords

  • The discrete spectrum
  • Görtler instability
  • Compressible flow