Flow, Turbulence and Combustion

, Volume 93, Issue 4, pp 665–687 | Cite as

Numerical Simulations of the Sandia Flame D Using the Eddy Dissipation Concept

  • Dmitry A. Lysenko
  • Ivar S. Ertesvåg
  • Kjell Erik Rian


A turbulent piloted methane/air diffusion flame (Sandia Flame D) is calculated using both compressible Reynolds-averaged and large-eddy simulations (RAS and LES, respectively). The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction, which assumes that molecular mixing and the subsequent combustion occur in the fine structures (smaller dissipative eddies, which are close to the Kolmogorov length scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the fine structures are evaluated using a standard k- 𝜖 turbulence model for RAS and a one-equation eddy-viscosity sub-grid scale model for LES. Finite-rate chemical kinetics are taken into account by treating the fine structures as constant pressure and adiabatic homogeneous reactors (calculated as a system of ordinary-differential equations (ODEs)) described by a Perfectly Stirred Reactor (PSR) concept. A robust implicit Runge-Kutta method (RADAU5) is used for integrating stiff ODEs to evaluate reaction rates. The radiation heat transfer is treated by the P1-approximation. The assumed β-PDF approach is applied to assess the influence of modeling of the turbulence-chemistry interaction. Numerical results are compared with available experimental data. In general, there is good agreement between present simulations and measurements both for RAS and LES, which gives a good indication on the adequacy and accuracy of the method and its further application for turbulent combustion simulations.


Reynolds-averaged simulations Large-eddy simulation Eddy dissipation concept RADAU5 Sandia flame D Perfectly stirred reactor OpenFOAM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ANSYS FLUENT R12. Theory guide. Tech. rep., Ansys Inc (2009)Google Scholar
  2. 2.
    Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)CrossRefGoogle Scholar
  3. 3.
    Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)CrossRefGoogle Scholar
  4. 4.
    Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI-Mech (2008). Accessed Feb 2013
  5. 5.
    Chase, M.: NIST-JANAF thermochemical tables, 4th edn. In: Journal of Physical and Chemical Reference Data, Monographs and Supplements, vol 9 (1998)Google Scholar
  6. 6.
    Cheng, P.: Dynamics of a radiating gas with application to flow over a wavy wall. AIAA J. 4(2), 238–245 (1966)CrossRefGoogle Scholar
  7. 7.
    Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff- body stabilised nonpremixed flames. Combust. Flame 114, 119–148 (1998)CrossRefGoogle Scholar
  8. 8.
    Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151(1–2), 46–60 (2007)CrossRefGoogle Scholar
  9. 9.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32 (2), 1779–1786 (2009)CrossRefGoogle Scholar
  10. 10.
    Ertesvåg, I.S., Magnussen, B.F: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159, 213–235 (2000)CrossRefGoogle Scholar
  11. 11.
    Feymark, A., Alin, N., Bensow, R., Fureby, C.: Numerical simulation of an oscillating cylinder using large eddy simulation and implicit large eddy simulation. J. Fluids Eng. 134, 031205 (2012)CrossRefGoogle Scholar
  12. 12.
    Frank, J.H., Barlow, R.S., Lundquist, C.: Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Comb. Inst. 28, 447–454 (2000)CrossRefGoogle Scholar
  13. 13.
    Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: Dynamic subgrid-scale eddy viscosity model. In: Summer Workshop, Center for Turbulence Research. Stanford (1996)Google Scholar
  15. 15.
    Geurts, B.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards, Philadelphia (2004)Google Scholar
  16. 16.
    Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)CrossRefGoogle Scholar
  17. 17.
    Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 2nd rev. edn. Springer-Verlag (1996)Google Scholar
  18. 18.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hestens, M., Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Nat. Bur. Stand. 29, 409–436 (1952)CrossRefGoogle Scholar
  20. 20.
    Hewson, J.C., Kerstein, A.R.: Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames. Combust. Theory Model. 5, 669–897 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hossain, M., Jones, J.C., Malalasekera, W.: Modelling of a bluff-Body nonpremixed flame using a coupled radiation/flamelet combustion model. Flow Turbul. Combust. 67, 217–234 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hottel, H.C, Sarofim, A.F.: Radiative Transfer. McGraw-Hill, New York (1967)Google Scholar
  23. 23.
    Hutchinson, B., Raithby, G.: A multigrid method based on the additive correction strategy. J. Numer. Heat. Transf. 9, 511–37 (1986)Google Scholar
  24. 24.
    Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Jasak, H., Weller, H.G., Gosman, A.D., High resolution, N.V.D: differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Meth. Fluids 31, 431–449 (1999)CrossRefzbMATHGoogle Scholar
  26. 26.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Jones, W.P., Whitelaw, J.H.: Calculation methods for reacting turbulent flows: A review. Combust. Flame 48, 1–26 (1982)CrossRefGoogle Scholar
  28. 28.
    Jones, W.P., Prasad, V.N.: Large eddy simulation of the Sandia Flame Series (D-F) using the Eulerian stochastic field method. Combust. Flame 157, 1621–1636 (2010)CrossRefGoogle Scholar
  29. 29.
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Method Appl. M 3(2), 269–289 (1974)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lilleberg, B.: On mathematical modeling and numerical simulation of chemical kinetics in turbulent lean premixed combustion, PhD thesis, Norwegian University of Science and Technology, 2011:206, Trondheim (2011)Google Scholar
  31. 31.
    Lilleberg, B., Christ, D., Ertesvåg, I.S., Rian, K.E., Kneer, R.: Numerical simulation with an extinction database for use with the Eddy dissipation concept for turbulent combustion. Flow Turbul. Combust. 91, 319–346 (2013)CrossRefGoogle Scholar
  32. 32.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids 80, 408–422 (2013)CrossRefzbMATHGoogle Scholar
  33. 33.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 89, 491–518 (2012)CrossRefGoogle Scholar
  34. 34.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number, 2×104. Flow Turbul. Combust. 92, 673–698 (2014)CrossRefGoogle Scholar
  35. 35.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E., Lilleberg, B., Christ D.: Numerical simulation of turbulent flames using the Eddy dissipation concept with detailed chemistry. In: Skallerud, B., Andersson, H.I. (eds.) Computational Mechanics, pp. 159–178. Trondheim (2013)Google Scholar
  36. 36.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Numerical simulation of non-premixed turbulent combustion using the Eddy dissipation concept and comparing with the steady laminar flamelet model. Flow Turbul. Combust. doi: 10.1007/s10494-014-9551-7 (2014)
  37. 37.
    Magnussen, B.F., Hjertager, B.H: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)CrossRefGoogle Scholar
  38. 38.
    Magnussen, B.F.: Modeling of NOx and soot formation by the Eddy dissipation concept. Int. flame research foundation, 1st topic oriented technical meeting, 17-19 Oct. 1989. Amsterdam, HollandGoogle Scholar
  39. 39.
    Magnussen, B.F.: The Eddy dissipation concept a bridge between science and technology. In: ECCOMAS Thermal Conference on Computational Combustion. Lisbon (2005)Google Scholar
  40. 40.
    Marshak, R.E.: Note on the spherical harmonics method as applied to the Milne problem for a sphere. Phys. Rev. 71, 443–446 (1947)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    McGuirk, J.J., Rodi, W.: The calculation of three-dimensional turbulent free jets. In: Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds.) In Turbulent Shear Flows I: Selected Papers from the First International Symposium on Turbulent Shear Flows, pp. 71–83. Springer-Verlag, Germany (1979)Google Scholar
  42. 42.
    Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Panjwani, B.: Large Eddy simulation of turbulent combustion with chemical kinetics. PhD thesis, Norwegian University of Science and Technology, 2011:73, Trondheim (2011)Google Scholar
  44. 44.
    Pitsch, H., Steiner, H.: Large-Eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia Flame D). Phys. Fluids 12 (10), 2541–2554 (2000)CrossRefGoogle Scholar
  45. 45.
    Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames original research article. Combust. Flame 123 (3), 358–374 (2000)CrossRefGoogle Scholar
  46. 46.
    Pope, S.B.: An explanation of the turbulent round-jef/plane-jet anomaly. AIAA J. 16, 279–281 (1978)CrossRefGoogle Scholar
  47. 47.
    Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143, 56–78 (2005)CrossRefGoogle Scholar
  48. 48.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–32 (1983)CrossRefzbMATHGoogle Scholar
  49. 49.
    Sagaut, P.: Large Eddy simulation for incompressible flows, 3rd edn. Springer Berlin (2006)Google Scholar
  50. 50.
    Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fueled jet flames. Combust. Flame 135, 185–190 (2003)CrossRefGoogle Scholar
  51. 51.
    Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Trans-T. ASME 104 (4), 602–608 (1982)CrossRefGoogle Scholar
  52. 52.
    Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163 (1984)Google Scholar
  53. 53.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th edn. Springer, Berlin Heidelberg New York (2006)Google Scholar
  54. 54.
    Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182–207 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: Tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRefGoogle Scholar
  56. 56.
    Yoshizawa, A.: Statistical theory for compressible shear flows, with the application to subgrid modelling. Phys. Fluids 29(2152), 1416–1429 (1986)Google Scholar
  57. 57.
    Zahirović, S., Scharler, R., Kilpinen, P., Obernberger, I.: Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Model. 15, 61–87 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dmitry A. Lysenko
    • 1
  • Ivar S. Ertesvåg
    • 1
  • Kjell Erik Rian
    • 2
  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Computational Industry Technologies ASTrondheimNorway

Personalised recommendations