Flow, Turbulence and Combustion

, Volume 93, Issue 4, pp 637–663 | Cite as

Towards the Development of an Evolution Equation for Flame Turbulence Interaction in Premixed Turbulent Combustion

  • Umair Ahmed
  • Robert Prosser
  • Alistair J. Revell


Flame turbulence interaction is one of the leading order terms in the scalar dissipation \(\left (\widetilde {\varepsilon }_{c}\right )\) transport equation [35] and is thus an important phenomenon in premixed turbulent combustion. Swaminathan and Grout [36] and Chakraborty and Swaminathan [15, 16] have shown that the effect of strain rate on the transport of \(\widetilde {\varepsilon }_{c}\) is dominated by the interaction between the fluctuating scalar gradients and the fluctuating strain rate, denoted here by \(\overline {\rho }\widetilde {\Delta }_{c}= \overline {\rho {\alpha }\nabla c^{\prime \prime }S_{ij}^{\prime \prime }\nabla c^{\prime \prime }}\); this represents the flame turbulence interaction. In order to obtain an accurate representation of this phenomenon, a new evolution equation for \(\widetilde {\Delta }_{c}\) has been proposed. This equation gives a detailed insight into flame turbulence interaction and provides an alternative approach to model the important physics represented by \(\widetilde {\Delta }_{c}\). The \(\widetilde {\Delta }_{c}\) evolution equation is derived in detail and an order of magnitude analysis is carried out to determine the leading order terms in the \(\widetilde {\Delta }_{c}\) evolution equation. The leading order terms are then studied using a Direct Numerical Simulation (DNS) of premixed turbulent flames in the corrugated flamelet regime. It is found that the behaviour of \(\widetilde {\Delta }_{c}\) is determined by the competition between the source terms (pressure gradient and the reaction rate), diffusion/dissipation processes, turbulent strain rate and the dilatation rate. Closures for the leading order terms in \(\widetilde {\Delta }_{c}\) evolution equation have been proposed and compared with the DNS data.


Flame turbulence interaction Scalar turbulence interaction Premixed turbulent combustion Scalar dissipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide,third edn.Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)Google Scholar
  2. 2.
    Ashurst, W.T., Kerstein, a.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier Stokes turbulence. Phys. Fluids 30(8), 2343 (1987). doi: 10.1063/1.866513 CrossRefGoogle Scholar
  3. 3.
    Batchelor, G.: The effect of homogeneous turbulence on material lines and surfaces. Proceedings of the Royal Society of London. Series A. Math. Phys. Sci. 213(1114), 349–366 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Borghi, R.: Turbulent premixed combustion: Further discussions on the scales of fluctuations. Combust. and Flame 80(3-4), 304–312 (1990). doi: 10.1016/0010-2180(90)90106-2 CrossRefGoogle Scholar
  5. 5.
    Bray, K.: Modelling methods, Laminar flamelets and the Bray Moss Libby model. In: Swaminathan, N. ,Bray, K.N.C. (eds.) Turbulent Premixed Flames, pp.42-60. Cambridge University Press, Cambridge (2011)Google Scholar
  6. 6.
    Bray, K.N.C.: The interaction between turbulence and combustion. Symp. (Int.) Combust. 17(1), 223–233 (1979). doi: 10.1016/S0082-0784(79)80024-7 CrossRefGoogle Scholar
  7. 7.
    Bray, K.N.C.: Studies of the Turbulent Burning Velocity. Proceedings: Electron. J. Math. Phys. Sci. 431(1882), 315–335 (1990)Google Scholar
  8. 8.
    Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modeling approach for premixed turbulent combustion-Part I: General formulation. Combust. and Flame 61(1), 87–102 (1985). doi: 10.1016/0010-2180(85)90075-6 CrossRefGoogle Scholar
  9. 9.
    Bray, K.N.C., Moss, J.B.: A Unified Statistical Model Of The Premixed Turbulent Flame. Acta. Astronaut. 4(3-4), 291–319 (1977). doi: 10.1016/0094-5765(77)90053-4 CrossRefGoogle Scholar
  10. 10.
    Candel, S., Poinsot, T.: Flame Stretch and the Balance Equation for the Flame Area. Combust. Sci. Technol. 70(1), 1–15 (1990). doi: 10.1080/00102209008951608 CrossRefGoogle Scholar
  11. 11.
    Cant, R.S.: SENGA2 User Guide, CUED/A THERMO/TR67. Tech. rep., University Of Cambridge, Cambridge, United Kingdom (2012)Google Scholar
  12. 12.
    Cant, R.S., Mastorakos, E.: An introduction to turbulent reacting flows. Imperial College Press (2008)Google Scholar
  13. 13.
    Chakraborty, N., Champion, M., Mura, A., Swaminathan, N.: Modelling methods, scalar dissipation rate approach. In: Swaminathan, N., Bray, K.N.C. (eds.).: Turbulent Premixed Flames, pp.74–102. Cambridge University Press (2011)Google Scholar
  14. 14.
    Chakraborty, N., Rogerson, J.W., Swaminathan, N.: A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids 20(4), 045, 106 (2008). doi: 10.1063/1.2903846 CrossRefGoogle Scholar
  15. 15.
    Chakraborty, N., Swaminathan, N.: Influence of the Damkohler number on turbulence-scalar interaction in premixed flames.I. Physical insight. Phys. Fluids 19(4), 045, 103 (2007). doi: 10.1063/1.2714070 CrossRefGoogle Scholar
  16. 16.
    Chakraborty, N., Swaminathan, N.: Influence of the Damkohler number on turbulence-scalar interaction in premixed flames. II. Model development. Phys. Fluids 19(4), 045, 104 (2007). doi: 10.1063/1.2714076 CrossRefGoogle Scholar
  17. 17.
    Chakraborty, N., Swaminathan, N.: Reynolds number effects on scalar dissipation rate transport and its modeling in turbulent premixed combustion. Combust. Sci. Technol. 185(4), 676–709 (2013). doi: 10.1080/00102202.2012.741635 CrossRefGoogle Scholar
  18. 18.
    Dunstan, T.D.: Turbulent premixed flame kernel growth during the early stages using direct numerical simulation.Ph.D. thesis,Cranfield University (2008)Google Scholar
  19. 19.
    Dunstan, T.D., Minamoto, Y., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling for large Eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34(1), 1193–1201 (2013). doi: 10.1016/j.proci.2012.06.143 CrossRefGoogle Scholar
  20. 20.
    Dunstan, T.D., Swaminathan, N., Bray, K.N.C.: Influence of flame geometry on turbulent premixed flame propagation: A DNS investigation. J. Fluid Mech. 709, 191–222 (2012). doi: 10.1017/jfm.2012.328 CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Cant, R.S.: Geometrical properties and turbulent flame speed measurements in stationary premixed V-flames using Direct Numerical Simulation. Flow, Turbul.Combust. 87(2-3), 237–259 (2010). doi: 10.1007/s10494-010-9284-1 CrossRefGoogle Scholar
  22. 22.
    Hartung, G., Hult, J., Kaminski, C., Rogerson, J.W., Swaminathan, N.: Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20(3), 035, 110 (2008). doi: 10.1063/1.2896285 CrossRefGoogle Scholar
  23. 23.
    Jenkins, K., Cant, R.: Direct numerical simulation of turbulent flame kernels.In: Knight, D., Sakell, L.(eds.)Recent Advances in DNS and LES: Proceedings of the Second AFOSR Conference, Rutgers - The State University of New Jersey, New Brunswick, USA, pp. 191202. Kluwer, Dordrecht (1999)Google Scholar
  24. 24.
    Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19(11), 115, 104 (2007). doi: 10.1063/1.2784943 CrossRefGoogle Scholar
  25. 25.
    Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modeling and its validation. Combust. Sci. Technol. 181(3), 518–535 (2009). doi: 10.1080/00102200802612419 CrossRefGoogle Scholar
  26. 26.
    Liu, Y., Dowling, A.P., Swaminathan, N., Dunstan, T.D.: Spatial correlation of heat release rate and sound emission from turbulent premixed flames. Combust. and Flame 159(7), 2430–2440 (2012). doi: 10.1016/j.combustflame.2012.03.003 CrossRefGoogle Scholar
  27. 27.
    Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T.D., Swaminathan, N.: Effect of flow-geometry on turbulence-scalar interaction in premixed flames. Phys. Fluids 23(12), 125, 107 (2011). doi: 10.1063/1.3665619 CrossRefGoogle Scholar
  28. 28.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion,2nd edn.Edwards, R.T.,Inc (2005)Google Scholar
  29. 29.
    Poinsot, T.J., Candel, S., Trouvé, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21(6), 531–576 (1995). doi: 10.1016/0360-1285(95)00011-9 CrossRefGoogle Scholar
  30. 30.
    Pope, S.B.: The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26(5), 445–469 (1988). doi: 10.1016/0020-7225(88)90004-3 CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Prosser, R.: Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows. I. Inviscid flows. J. Comput. Phys. 207(2), 736–768 (2005). doi: 10.1016/ CrossRefzbMATHGoogle Scholar
  32. 32.
    Prosser, R.: Improved boundary conditions for the DNS of reacting subsonic flows. Flow, Turbul. Combust. 87(2-3), 351–376 (2010). doi: 10.1007/s10494-010-9307-y CrossRefGoogle Scholar
  33. 33.
    Steinberg, A.M., Driscoll, J.F., Swaminathan, N.: Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust. and Flame 159(8), 2576–2588 (2012). doi: 10.1016/j.combustflame.2011.12.001 CrossRefGoogle Scholar
  34. 34.
    Sutherland, J.C., Kennedy, C.a.: Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191(2), 502–524 (2003). doi: 10.1016/S0021-9991(03)00328-0 CrossRefzbMATHGoogle Scholar
  35. 35.
    Swaminathan, N., Bray, K.N.C.: Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. and Flame 143(4), 549–565 (2005). doi: 10.1016/j.combustflame.2005.08.020 CrossRefGoogle Scholar
  36. 36.
    Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18(4), 045, 102 (2006). doi: 10.1063/1.2186590 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theory Model. 11(2), 259–286 (2007). doi: 10.1080/13647830600898995 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Umair Ahmed
    • 1
  • Robert Prosser
    • 1
  • Alistair J. Revell
    • 1
  1. 1.Modelling & Simulation Centre, School of MACEUniversity of ManchesterManchesterUK

Personalised recommendations