Flow, Turbulence and Combustion

, Volume 93, Issue 4, pp 577–605

Numerical Simulation of Non-premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing with the Steady Laminar Flamelet Model

  • Dmitry A. Lysenko
  • Ivar S. Ertesvåg
  • Kjell Erik Rian
Article

Abstract

Numerical simulations of the Sandia flame CHNa and the Sydney bluff-body stabilized flame HM1E are reported and the results are compared to available experimental data. The numerical method is based on compressible URANS formulations which were implemented recently in the OpenFOAM toolbox. In this study, the calculations are carried out using the conventional compressible URANS approach and a standard k- 𝜖 turbulence model. The Eddy Dissipation Concept with a detailed chemistry approach is used for the turbulence-chemistry interaction. The syngas (CO/H2) chemistry diluted by 30 % nitrogen in the Sandia flame CHNa and CH4/H2 combustion in the Sydney flame HM1E are described by the full GRI-3.0 mechanism. A robust implicit Runge-Kutta method (RADAU5) is used for integrating stiff ordinary differential equations to calculate the reaction rates. The radiation is treated by the P1-approximation model. Both target flames are predicted with the Steady Laminar Flamelet model using the commercial code ANSYS FLUENT as well. In general, there is good agreement between present simulations and measurements for both flames, which indicates that the proposed numerical method is suitable for this type of combustion, provides acceptable accuracy and is ready for further combustion application development.

Keywords

Sandia flame CHNa Sydney flame HM1E Compressible Reynolds-averaged simulations RADAU5 Eddy Dissipation Concept OpenFOAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ANSYS FLUENT R12: Theory guide. Tech. rep. (2009). Ansys Inc.Google Scholar
  2. 2.
    Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)CrossRefGoogle Scholar
  3. 3.
    Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)CrossRefGoogle Scholar
  4. 4.
    Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI-Mech (2008). Accessed February 2013 http://www.me.berkeley.edu/gri-mech/
  5. 5.
    Chase, M.: NIST-JANAF Thermochemical tables. J. Phys. Chem. Ref. Data, Monogr. Suppl. (1998)Google Scholar
  6. 6.
    Cheng, P.: Dynamics of a radiating gas with application to flow over a wavy wall. AIAA J. 4, 238–245 (1966)CrossRefGoogle Scholar
  7. 7.
    Chomiak, J., Karlsson, A.: Flame liftoff in diesel sprays. In: Proceedings of 26th International Symposium on Combustion, pp. 2557–2564 (1996)Google Scholar
  8. 8.
    Cuoci, A., Frassoldati, A., Ferraris, G., Buzzi, Faravelli, T., Ranzi, E.: The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2: Fluid dynamics and kinetic aspects of syngas combustion. Int. J. Hydrog. Energy 32, 3486–3500 (2007)CrossRefGoogle Scholar
  9. 9.
    Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff- body stabilised nonpremixed flames. Combust. Flame 114, 119–148 (1998)CrossRefGoogle Scholar
  10. 10.
    Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007)CrossRefGoogle Scholar
  11. 11.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32, 1779–1786 (2009)CrossRefGoogle Scholar
  12. 12.
    Fox, R.O.: Computational models for turbulent reacting flows. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  13. 13.
    Frank, J.H., Barlow, R.S., Lundquist, C.: Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Comb. Inst 28, 447–454 (2000)CrossRefGoogle Scholar
  14. 14.
    Frassoldati, A., Faravelli, T., Ranzi, E: The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J. Hydroge. Energy 32, 3471–3485 (2007)CrossRefGoogle Scholar
  15. 15.
    Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159, 213–235 (2000)CrossRefGoogle Scholar
  16. 16.
    Geurts, B.: Elements of direct and large-eddy simulation. R.T. Edwards, Philadelphia (2004)Google Scholar
  17. 17.
    Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)CrossRefGoogle Scholar
  18. 18.
    Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd ed. Springer Series in Computational Mathematics. Springer-Verlag (1996)Google Scholar
  19. 19.
    Hestens, M, Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Nat. Bur. Stand 29, 409–436 (1952)CrossRefGoogle Scholar
  20. 20.
    Hewson, J.C., Kerstein, A.R.: Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames. Combust. Theory Model. 5, 669–897 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Hossain, M., Jones, J.C., Malalasekera, W.: Modelling of a bluff-Body nonpremixed flame using a coupled radiation/flamelet combustion model. Flow Turbul. Combust. 67, 217–234 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Hottel, H.C, Sarofim, A.F.: Radiative Transfer. McGraw-Hill, New York (1967)Google Scholar
  23. 23.
    Hutchinson, B., Raithby, G.: A multigrid method based on the additive correction strategy. J. Numer. Heat Transfer 9, 37–511 (1986)Google Scholar
  24. 24.
    Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Jones, W.P., Whitelaw, J.H.: Calculation methods for reacting turbulent flows: a review, Combust. Flame 48, 1–26 (1982)CrossRefGoogle Scholar
  26. 26.
    Launder, B., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Tran. 1, 131–138 (1974)Google Scholar
  27. 27.
    Launder, B.E., Spalding, D.B: The numerical computation of turbulent flows. Comput. Method Appl. M. 3, 269–289 (1974)CrossRefMATHGoogle Scholar
  28. 28.
    Leonard, B.P., Mokhtari, S.: ULTRA-SHARP Nonoscillatory convection schemes for high-speed steady multidimensional flow, NASA TM 1-2568 (ICOMP-90-12) NASA Lewis Research Center (1990)Google Scholar
  29. 29.
    Lilleberg, B., Christ, D., Ertesvåg, I.S., Rian, K.E., Kneer, R.: Numerical simulation with an extinction database for use with the Eddy Dissipation Concept for turbulent combustion. Flow Turbul. Combust. 91, 319–346 (2013)CrossRefGoogle Scholar
  30. 30.
    Liu, K., Pope, S.B., Caughey, D.A.: Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry. Combust. Flame 141, 89–117 (2005)CrossRefGoogle Scholar
  31. 31.
    Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids 80, 408–422 (2013)CrossRefMATHGoogle Scholar
  32. 32.
    Magnussen, B.F., Hjertager, B.H: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)CrossRefGoogle Scholar
  33. 33.
    Magnussen, B.F.: Modeling of NOx and soot formation by the Eddy Dissipation Concept. Int.Flame Research Foundation, 1st topic Oriented Technical Meeting., 17-19 Oct., Amsterdam, Holland (1989)Google Scholar
  34. 34.
    Magnussen, B.F: The Eddy Dissipation Concept a bridge between science and technology, ECCOMAS Thermal Conference on Computational Combustion, Lisbon, Portugal, 21-24 June (2005)Google Scholar
  35. 35.
    Marshak, R.E.: Note on the spherical harmonics method as applied to the Milne problem for a sphere. Phys. Rev. 71, 443–446 (1947)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Marzouk, O.A., Huckaby, E.D.: A comparative study of eight finite-rate chemistry kinetics for CO/H2 combustion. Eng. App. Comput. Fluid Mech. 4, 331–356 (2010)Google Scholar
  37. 37.
    Meijerink, J.A., Van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977)MATHMathSciNetGoogle Scholar
  38. 38.
    McGuirk, J.J., Rodi, W. In: Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds.): The calculation of three-dimensional turbulent free jets. In turbulent Shear Flows I: Selected papers from the First International Symposium on Turbulent Shear Flows, pp 71–83. Springer-Verlag, Germany (1979)Google Scholar
  39. 39.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRefGoogle Scholar
  40. 40.
    Menter, F., Esch, T.: Elements of industrial heat transfer prediction, 16th Brazilian Congress of Mechanical Engineering (COBEM) (2001)Google Scholar
  41. 41.
    Merci, B., Naud, B., Roekaerts, D.: Impact of turbulent flow and mean mixture fraction results on mixing model behavior in transported scalar PDF simulations of turbulent non-premixed bluff body flames. Flow Turbul. Combust. 79, 41–53 (2007)CrossRefMATHGoogle Scholar
  42. 42.
    Merci, B., Naud, B., Roekaerts, D., Maas, U.: Joint scalar versus joint velocity-scalar PDF simulations of bluff-body stabilized flames with REDIM. Flow Turbul. Combust. 82, 185–209 (2009)CrossRefMATHGoogle Scholar
  43. 43.
    Peters, N.: Laminar diffusion flamelet models in non premixed combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)CrossRefGoogle Scholar
  44. 44.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  45. 45.
    Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Comb. Flame 114, 26–40 (1998)CrossRefGoogle Scholar
  46. 46.
    Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358–374 (2000)CrossRefGoogle Scholar
  47. 47.
    Pope, S.B.: An explanation of the turbulent round-jef/plane-jet anomaly. AIAA J. 16, 279–281 (1978)CrossRefGoogle Scholar
  48. 48.
    Raithby, G.D., Chui, E.H.: A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J. Heat Transfer 122, 415–423 (1990)CrossRefGoogle Scholar
  49. 49.
    Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. J. Comb. Flame 143, 56–78 (2005)CrossRefGoogle Scholar
  50. 50.
    Richardson, L.F.: Weather prediction by numerical process. Cambridge University Press, Cambridge (1922)MATHGoogle Scholar
  51. 51.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 32–1525 (1983)Google Scholar
  52. 52.
    Sabelnikov, V., Fureby, C.: LES combustion modeling for high Re flames using a multi-phase analogy, Combust. Flame, 160, pp 83–96 (2013)Google Scholar
  53. 53.
    Shih, T.-H., Liou, W., Shabbir, A., Yang, Z., Zhu, J.: A new k- 𝜖 eddy-viscosity model for high Reynolds number turbulent flows model development and validation. Comput. Fluids 24, 22738 (1995)CrossRefGoogle Scholar
  54. 54.
    Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Trans-T. ASME 104, 602–608 (1982)CrossRefGoogle Scholar
  55. 55.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th ed. Springer. Berlin Heidelberg, New York (2006)Google Scholar
  56. 56.
    Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182–207 (2007)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. J. Comp. Phys. 12, 620–631 (1998)CrossRefGoogle Scholar
  58. 58.
    Williams, F.A.: Turbulent mixing in non-reactive and reactive flows (S.N.B. Muurthy, ed.), p. 189, Plenum (1975)Google Scholar
  59. 59.
    Yan, J., Thiele, F., Buffat, M.: A turbulence model sensitivity study for CH4/H2 bluff-body stabilized flames. Flow Turb. Combust. 73, 1–24 (2004)CrossRefMATHGoogle Scholar
  60. 60.
    Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147–163 (1984)Google Scholar
  61. 61.
    Zahirovic, S., Scharler, R., Kilpinen, P., Obernberger, I.: Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Model. 15, 61–87 (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dmitry A. Lysenko
    • 1
  • Ivar S. Ertesvåg
    • 1
  • Kjell Erik Rian
    • 2
  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Computational Industry Technologies ASTrondheimNorway

Personalised recommendations