Skip to main content
Log in

Large Eddy Simulations of a Small-Scale Flameless Combustor by Means of Diluted Homogeneous Reactors

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A new model for Flameless Combustion (FC) based on the tabulation of diluted homogeneous reactors (DHR) is presented. This model is developed within the Large Eddy Simulations (LES) approach because LES has a good potential for correctly predicting the ternary mixing of FC. In DHR, a ternary mixture of fuel, air and burnt gases at equilibrium is considered as an initial condition for the reactor calculations. The auto-ignition of this mixture is then tabulated as a function of the input parameters which are mixture fraction, fresh gases temperature, dilution fraction, progress variable and enthalpy loss. The enthalpy loss is introduced by decreasing the temperature of the diluting burnt gases. The DHR model is first evaluated over the partially premixed Sandia Flame D. Correct results are obtained for this flame, although CO is overestimated by the model. This discrepancy is attributed to the usage of homogeneous reactors which impedes to account for the influence of scalar dissipation. Secondly, the flameless configuration of Verissimo et al., characterized by a strong enthalpy loss due to wall heat losses, is used to assess the performance of the model. Combustion results are found in correct agreement for temperature and major species. The largest discrepancies are found for CO again, although the axial shape for this species is correctly predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wunning, J.A., Wunning, J.G.: Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci. 23, 81–94 (1997)

    Article  Google Scholar 

  2. Cavaliere, A, de Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  3. Ihme, M., See, Y.C.: LES flamelet modeling of a three-stream MILD combustor. Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst. 33, 1309–1317 (2011)

    Article  Google Scholar 

  4. Coelho, P.J., Peters, N.: Numerical simulation of a mild combustion burner. Combust. Flame 124, 444–465 (2001)

    Article  Google Scholar 

  5. Plessing, T., Peters, N., Wunning, J.G.: Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst. 27, 3197–3204 (1998)

    Article  Google Scholar 

  6. Dally, B.B., Karpetis, A.N., Barlow, R.S.: Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29, 1147–1154 (2002)

    Article  Google Scholar 

  7. Kim, S.H., Huh, K.Y., Dally, B.B.: Conditional moment closure modeling of turbulent non-premixed combustion in diluted hot coflow. Proc. Combust. Inst. 30, 751–757 (2005)

    Article  Google Scholar 

  8. Christo, F.C., Dally, B.B.: Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142, 117–129 (2005)

    Article  Google Scholar 

  9. Verissimo, A.S., Rocha, A.M.A., Costa, M.: Operational, combustion, and emission characteristics of a small-scale combustor. Energy Fuel 25, 2469–2480 (2011)

    Article  Google Scholar 

  10. Verissimo, A.S., Rocha, A.M.A., Costa, M.: Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor. Exp. Thermal Fluid Sci. 44, 75–81 (2012)

    Article  Google Scholar 

  11. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  12. Cuoci, A., Frassoldati, A., Stagni, A., Faravelli, T., Ranzi, E., Buzzi-Ferraris, G.: Numerical modeling of NOx formation in turbulent flames using a kinetic post-processing technique. Energy Fuel 27, 1104–1122 (2013)

    Article  Google Scholar 

  13. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  14. Eyssartier, A., Cuenot, B., Gicquel, L.Y.M, Poinsot, T.: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames. Combust. Flame 160, 1191–1207 (2013)

    Article  Google Scholar 

  15. Hermeth, S., Staffelbach, G., Gicquel, L.Y.M, Poinsot, T.: LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34, 3165–3173 (2013)

    Article  Google Scholar 

  16. Duwig, C., Szasz, R.Z., Fuchs, L.: Modeling of flameless combustion using Large Eddy Simulation. Proc. GT2006, ASME Turbo Expo Power for Land, Sea and Air GT2006-90063 (2006)

  17. Michel, J.B., Colin, O., Veynante, D.: Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combust. Flame 152, 80–99 (2008)

    Article  Google Scholar 

  18. Michel, J.B., Colin, O., Angelberger, A., Veynante, D.: Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane-air jet flame. Combust. Flame 156, 1318–1331 (2009)

    Article  Google Scholar 

  19. Ihme, M., Zhang, J., He, G., Dally, B.: Large-Eddy Simulation of a Jet-in-Hot-Coflow burner operating in the oxygen-diluted combustion regime. Flow Turbul. Combust. 89, 449–464 (2012)

    Article  Google Scholar 

  20. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, K., Ribert, G., Domingo, P., Vervisch, L.: Self-similar behavior and chemistry tabulation of burnt-gas diluted premixed flamelets including heat-loss. Combust. Theory Model. 14, 541–570 (2012)

    Article  Google Scholar 

  22. Tillou, J., Michel, J.-B., Angelberger, C., Veynante, D.: Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combust. Flame, in press (2014)

  23. Colin, O., da Cruz, A.P., Jay, S.: Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations. Proc. Combust. Inst. 30, 2649–2656 (2005)

    Article  Google Scholar 

  24. Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  25. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., Qin, Z.: http://www.me.berkely.eud/gri_mech/

  26. Fiorina, B., Baron, R., Gicquel, L., Thevenin, D., Carpentier, S., Darabiha, N.: Modeling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 7, 449–470 (2003)

    Article  Google Scholar 

  27. Vervisch, L., Hauguel, R., Domingo, P., Rullaud: Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J. Turbul. 5, 1–36 (2004)

    Article  Google Scholar 

  28. Chevillard, S., Michel, J.B., Pera, C., Reveillon, J.: Validation of turbulent combustion models based on homogeneous-reactor tabulated chemistry. Submitted to Combust. Theory Model. (2013)

  29. Doran, E.M., Pitsch, H., Cook, D.J.: A priori testing of a two-dimensional unsteady flamelet model for three-feed combustion systems. Proc. Combust. Inst. 34, 1317–1324 (2013)

    Article  Google Scholar 

  30. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proc. Combust. Inst. 30, 867–874 (2005)

    Article  Google Scholar 

  31. Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202, 710–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Michel, J.B., Colin, O., Angelberger, A.: On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques. Combust. Flame 157, 701–714 (2010)

    Article  Google Scholar 

  33. Cosilab: Rotexo Software, Bochum (2010)

  34. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  35. Luche, J.: Luche Elaboration of reduced kinetic models of combustion. Application to a kerosene mechanism. PhD Thesis, Université d’Orléans (2003)

  36. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. (2012)

  37. Barlow, R.S., Frank, J.H.: Proc. Combust. Inst. 27, 1087–1095 (1998) (experimental database at http://www.ca.sandia.gov/TNF/DataArch/FlameD.html)

  38. Meier, W., Barlow, R.S., Chen, Y.-L., Chen: Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence–chemistry interaction. Combust. Flame 326–343 (2000)

  39. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003)

    Article  Google Scholar 

  40. Vreman, A.W., Albrecht, B.A., van Oijen, J.A, de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia Flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  41. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for Large-Eddy Simulations and particle-dynamics modeling. J. Fluids Eng. 123, 359–371 (2001)

    Article  Google Scholar 

  42. Kraichnan, R.: Diffusion by a random velocity field. Phy. Fluids 13, 22–31 (1970)

    Article  MATH  Google Scholar 

  43. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flow. J. Comput. Phys. 101, 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Coelho, P.J., Teerling, O.J., Roekaerts, D.: Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133, 75–91 (2003)

    Article  Google Scholar 

  45. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 147–160 (2005)

    Article  Google Scholar 

  46. Verissimo, A., Oliveira, R., Coelho, P.J., Costa, M.: Numerical simulation of a small-scale mild combustor. J. Phys.: Conf. Ser. 395, 012003 (2012)

    Google Scholar 

  47. Sagaut, P.: Large Eddy Simulation for incompressible flows. Springer, Berlin Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Colin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locci, C., Colin, O. & Michel, JB. Large Eddy Simulations of a Small-Scale Flameless Combustor by Means of Diluted Homogeneous Reactors. Flow Turbulence Combust 93, 305–347 (2014). https://doi.org/10.1007/s10494-014-9548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9548-2

Keywords

Navigation