Skip to main content
Log in

Linear Eddy Mixing Model Studies of High Karlovitz Number Turbulent Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent premixed flames exhibit different structural and propagation characteristics with increasing upstream turbulence intensity starting from thin wrinkled flames in the Corrugated Flamelet regimes to a flame with a thicker preheat zone in the Thin Reaction Zone Regime (TRZ) and finally, becoming more disorganized or broken in the Distributed or Broken Reaction Zone (D/BRZ) regimes under intense turbulence. A single comprehensive predictive model that can span all regimes does not currently exist, and in this study we explore the ability of the stand-alone one-dimensional linear-eddy mixing (LEM) model to simulate the flames in all these regimes. Past applications of this 1DLEM model have demonstrated reasonable predictions in the flamelet and TRZ regimes and here, new experiments in the TRZ regime are specifically addressed to evaluate the predictive capability of this model. Additional simulations in the D/BRZ regimes (where no data is currently available) are performed to determine if the model can be extended to the high turbulence regime. Comparison with the data in the TRZ regime shows satisfactory agreement. Analysis suggests varying levels of preheat zone broadening in all the TRZ and D/BRZ cases. While the average heat release distribution for the TRZ cases is nearly identical to the laminar unstrained baseline, changes to the species and heat release distribution are observed only at a high Karlovitz Number K a > 103. In the D/BRZ regime it is shown that the transition is related to enhanced turbulent diffusion that dominates molecular diffusion effects causing deviations from the laminar baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspden, A., Day, M., Bell, J.: Lewis number effects in distributed flames. Proc. Comb. Inst. 33, 1473–1480 (2011)

    Article  Google Scholar 

  2. Aspden, A., Day, M., Bell, J.: Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)

    Article  MATH  Google Scholar 

  3. Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. Int. Comb. 27, 917–925 (1998)

    Article  Google Scholar 

  4. Brown, P., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ode solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chakravarthy, V., Menon, S.: Large eddy simulation of turbulent premixed flames in the flamelet regime. Comb. Sci. Tech. 162, 175–222 (2001)

    Article  Google Scholar 

  6. Chakravarthy, V., Menon, S.: Linear eddy simulations of Reynolds number and Schmidt number effects on turbulent scalar mixing. Phys. Fluids 13, 488–499 (2001)

    Article  Google Scholar 

  7. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  Google Scholar 

  8. Dinkelacker, F., Soika, A., Most, D., Hofmann, D., Leipertz, A., Polifke, W., Döbbeling, K.: Structure of locally quenched highly turbulent lean premixed flamesSymposium (International) on Combustion, Vol. 27, pp 857–865. Elsevier (1998)

  9. Dunn, M., Masri, A., Bilger, R.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007)

    Article  Google Scholar 

  10. de Goey, L., Plessing, T., Hermanns, R., Peters, N.: Analysis of the flame thickness of turbulent flamelets in the thin reaction zones regime. Proc. Comb. Inst. 30, 859–866 (2005)

    Article  Google Scholar 

  11. Gülder, Ö.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31(1), 1369–1375 (2007)

    Article  Google Scholar 

  12. Hawkes, E., Cant, R.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)

    Article  Google Scholar 

  13. Kee, R., Rupley, F., Miller, J.: Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories: Albuquerque, NM, SAND89-8009 (1989)

  14. Kerstein, A.: Linear eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)

    Article  MATH  Google Scholar 

  15. Knudsen, E., Pitsch, H.: Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159(1), 242–264 (2012)

    Article  Google Scholar 

  16. Mansour, M., Peters, N., Chen, Y.C.: Investigation of scalar mixing in the thin reaction zones regime using a simultaneous CH-LIF/Rayleigh laser techniqueSymposium (International) on Combustion, Vol. 27, pp 767–773. Elsevier (1998)

  17. McMurtry, P., Menon, S., Kerstein, A.: Linear eddy modeling of turbulent combustion. Energy Fuels 7, 817–826 (1993)

    Article  Google Scholar 

  18. Menon, S., Kerstein, A.: The linear-eddy model. Fluid Mech. Appl.: Turbulent Combust. Model. 95, 221–247 (2011)

    Google Scholar 

  19. Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156, 801–812 (2009)

    Article  Google Scholar 

  20. Oevermann, M., Schmidt, H., Kerstein, A.: Investigation of autoignition under thermal stratification using linear eddy modeling. Combust. Flame 155(3), 370–379 (2008)

    Article  Google Scholar 

  21. Patel, N., Menon, S.: Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust. Flame 153, 228–257 (2008)

    Article  Google Scholar 

  22. Peters, N.: Turbulent Combustion. Cambridge University Press (2000)

  23. Pitsch, H.: A consistent level set formulation for large–eddy simulation of premixed turbulent combustion. Combust. Flame 143, 587–598 (2005)

    Article  Google Scholar 

  24. Plessing, T., Kortschick, C., Peters, N., Mansour, M., Cheng, R.: Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Comb. Inst. 28, 359–366 (2000)

    Article  Google Scholar 

  25. Poinsot, T., Veynante, D.: Theoretical and numerical combustion. RT Edwards, Inc (2005)

  26. Poludnenko, A., Oran, E.: The interaction of high–speed turbulence with flames: Global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)

    Article  Google Scholar 

  27. Sankaran, R., Hawkes, E., Chen, J., Lu, T., Law, C.: Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Comb. Inst. 31, 1291–1298 (2007)

    Article  Google Scholar 

  28. Sankaran, V., Drozda, T., Oefelein, J.: A tabulated closure for turbulent non-premixed combustion based on the linear eddy model. Proc. Combust. Inst. 32(1), 1571–1578 (2009)

    Article  Google Scholar 

  29. Sankaran, V., Menon, S.: Structure of premixed turbulent flames in the thin reaction zones regime. Proc. Comb. Inst. 28, 203–209 (2000)

    Article  Google Scholar 

  30. Sankaran, V., Menon, S.: Subgrid combustion modeling of 3-d premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst. 30(1), 575–582 (2005)

    Article  Google Scholar 

  31. Savre, J., Carlsson, H., Bai, X.: Turbulent methane/air premixed flame structure at high Karlovitz numbers. Flow Turb. Combust. 90, 325–341 (2013)

    Article  Google Scholar 

  32. Sen, B., Menon, S.: Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combust. Flame 157(1), 62–74 (2010)

    Article  Google Scholar 

  33. Smith, T., Menon, S.: One–dimensional simulations of freely propagating turbulent premixed flames. Comb. Sci. Tech. 128, 99–130 (1997)

    Article  Google Scholar 

  34. Srinivasan, S., Menon, S.: From flamelet to distributed/broken reaction zone regimes: investigations using the linear eddy model. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012)

  35. Sung, C., Law, C., Chen, J.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Comb. Inst. 27, 295–304 (1998)

    Article  Google Scholar 

  36. Sweeney, M., Hochgreb, S., Barlow, R.: The structure of premixed and stratified low turbulence flames. Combust. Flame 158(5), 935–948 (2011)

    Article  Google Scholar 

  37. Undapalli, S., Srinivasan, S., Menon, S.: LES of premixed and non-premixed combustion in a stagnation point reverse flow combustor. Proc. Combust. Inst. 32(1), 1537–1544 (2009)

    Article  Google Scholar 

  38. Veynante, D., Lodato, G., Domingo, P., Vervisch, L., Hawkes, E.: Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion. Exp. Fluids 49(1), 267–278 (2010)

    Article  Google Scholar 

  39. Woosley, S., Kerstein, A., Aspden, A.: Flames in type Ia supernova: deflagration-detonation transition in the oxygen-burning flame. Astrophys. J. 734(1), 37 (2011)

    Article  Google Scholar 

  40. Yuen, F., Gülder, Ö.: Investigation of dynamics of lean turbulent premixed flames by Rayleigh imaging. AIAA J. 47, 2964–2973 (2009)

    Article  Google Scholar 

  41. Yuen, F., Gülder, Ö.: Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime. Proc. Comb. Inst. 32, 1747–1754 (2009)

    Article  Google Scholar 

  42. Yuen, F., Gülder, Ö.: Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Comb. Inst. 34(1), 1393–1400 (2013)

    Article  Google Scholar 

  43. Zimberg, M., Frankel, S., Gore, J., Sivathanu, Y.: A study of coupled turbulent mixing, soot chemistry, and radiation effects using the linear eddy model. Combust. Flame 113(3), 454–469 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikant Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S., Menon, S. Linear Eddy Mixing Model Studies of High Karlovitz Number Turbulent Premixed Flames. Flow Turbulence Combust 93, 189–219 (2014). https://doi.org/10.1007/s10494-014-9542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9542-8

Keywords

Navigation